Pflanzliche Baupläne
Weizen und Gerste gehören zu den weltweit am häufigsten angebauten Getreidearten und spielen als Grundnahrungsmittel, die wesentlich zur Kalorienzufuhr beitragen, in vielen Ernährungsgewohnheiten eine wichtige Rolle. Darüber hinaus sind sie von entscheidender Bedeutung für die Agrarwirtschaft und die Verbesserung der Ernährungssicherheit. Der Blütenstand oder die Ähre von Weizen und Gerste ist für die Produktion des Korns verantwortlich, so dass seine architektonischen Merkmale entscheidend für den Kornertrag sind. Da die Anzahl der Körner pro Ähre eine Schlüsselkomponente des Kornertrags bei diesen Getreidearten ist, konzentriert sich unsere Forschung auf die genetischen Faktoren, die das Wachstum, die Entwicklung und die Fruchtbarkeit der Ähre beeinflussen. In unserer Forschungsgruppe Pflanzliche Baupläne (PBP) führen wir eine umfassende Untersuchung natürlicher Variationen bei Weizen und induzierter Mutanten bei Gerste durch, um die komplizierten genetischen, molekularen und biochemischen Mechanismen zu entschlüsseln, die den Entwicklungsmerkmalen, insbesondere den Variationen der Kornzahl pro Ähre, zugrunde liegen. Um dieses ehrgeizige Vorhaben voranzutreiben, nutzen wir die hochmodernen Forschungseinrichtungen und innovativen analytischen Plattformen des IPK für die Phänotypisierung von Pflanzen, Mikroskopie und Multi-omics-Analysen, einschließlich fortschrittlicher DNA/RNA-Sequenzierung und Metabolomics. Darüber hinaus nutzen wir die reichhaltigen pflanzengenetischen Ressourcen des IPK und die einzigartige Expertise des Instituts in der Datenanalyse und -verwaltung, um innovative Entdeckungen in diesem wichtigen Forschungsbereich voranzutreiben.
scroll top
Projekte
Unser Verständnis der molekularen Genetik der Ährenarchitektur oder des Ährchenwachstums und der Ährchenentwicklung ist bei kleinkörnigen Getreidearten sehr begrenzt. Unser funktionelles Wissen über die Gene, die bei den meisten Getreidearten wesentliche Entwicklungsmerkmale wie die Verzweigung des Blütenstandes, die Initiierung oder Degeneration der Blüte, die Anzahl der Internodien der Spindel und deren Verlängerung regulieren, ist sehr lückenhaft. Ebenso ist unser Wissen über die Biologie der Getreideblüte nach wie vor unzureichend und umfasst wirtschaftlich bedeutsame Prozesse wie die Empfänglichkeit der Narbe, die Reifung der Staubgefäße sowie den Zeitpunkt und die Dauer der Dehiszenz der Antheren und der Staubfadenverlängerung.
So könnte ein tieferer Einblick in die Pflanzenmeristeme unser Verständnis vieler der oben genannten Aspekte verbessern, da Meristeme selbsterneuernde Pools pluripotenter Stammzellen beherbergen, die für die Bildung aller Pflanzenorgane, einschließlich Blättern, Stängeln, Wurzeln und Blüten, verantwortlich sind. Die Untersuchung der Rolle von WUS-verwandten Homeobox-Proteinen (WOX) in diesem Zusammenhang ist eine Schlüsselkomponente der DFG-finanzierten Forschergruppe (FOR5235)Cereal Stem Cell Systems (CSCS).
Ein weiterer Forschungsschwerpunkt ist die Frage, wie die Ressourcenallokation zu Kompromissen zwischen dem Wachstum und der Funktion verschiedener Organe führt, was wiederum die Fitness und Reproduktionsstrategien beeinflusst. So deuten frühere Ergebnisse darauf hin, dass der Begrünungszustand der unreifen Ähre eng mit ihrem Entwicklungsergebnis verknüpft ist, da weiter entfernt liegende Blütenstrukturen, die nicht begrünt sind, anfälliger für Degeneration sind.
- Etablierung und Erhaltung des Gerstenblütenstand-Meristems (DFG-geförderte Forschergruppe (FOR5235) Cereal Stem Cell Systems (CSCS)
- Ist der unreife und umhüllte Blütenstand von Getreide fotosynthetisch aktiv? (IPK-CEPLAS kollaborative Saatgut-Finanzierungsinitiative)
Blütenstandsarchitektur von Getreideähren
Die Anpassungsfähigkeit von Gräsern und die Architektur ihrer Blütenstände wurden insbesondere in den letzten 20 Millionen Jahren durch evolutionäre Kräfte beeinflusst. Die gemäßigten Triticeae-Pflanzen, Weizen und Gerste, weisen ährenförmige Blütenstände mit deutlich reduzierten Verzweigungsmustern auf. Bei diesen Pflanzen wird die modifizierte Verzweigung durch den COMPOSITUM-Stoffwechselweg reguliert (Poursarebani et al. 2020). Daher kann die Erforschung der Blütenstands Vielfalt auf molekularer und zellulärer Ebene bei verwandten Arten Möglichkeiten bieten, vorteilhafte Blütenstands Merkmale zwischen den Arten zu übertragen (Jiang et al. 2024). Solche Strategien könnten wertvolle Erkenntnisse darüber liefern, wie artspezifische Genregulationsnetzwerke manipuliert werden können, um die Senken Kapazität und den Kornertrag zu steigern (Abbai et al. 2024).
Überleben von Ährchen und Blütchen
Blütchen, die kornbildenden Organe von Getreideähren, entwickeln sich in der Regel im Übermaß und degenerieren dann während der späteren Entwicklung, wobei eine höhere Überlebensrate der Blütchen mit einer höheren Anzahl von Körnern verbunden ist. Daher stellt die Verringerung der Blütchensterblichkeit eine vielversprechende Strategie zur Steigerung der Kornerträge dar (Sakuma et al. 2019). Bei Weizen und Gerste erreicht die Blütchenanzahl in der Phase vor der Blüte und in der Phase der Stängelstreckung ihren Höhepunkt, gefolgt von einer signifikanten Sterblichkeit von bis zu 50 %, was zu weniger Körnern führt. Unsere früheren Ergebnisse zeigen, dass das Überleben der Blütchen in hohem Maße genetisch kontrolliert wird (Heritabilität >0,80) und einem komplexen, entwicklungsprogrammierten Mechanismus unterliegt (Huang et al. 2023; Shanmugaraj et al. 2023). Das Verständnis dieses Prozesses ist entscheidend für die Verbesserung der Blütchenfruchtbarkeit in unseren Getreidekulturen.
Das Ergrünen unreifer, eingehüllter Gräser-Blütenstände
Das Vorhandensein funktioneller Chloroplasten während der Entwicklung unreifer Blütenstände ist bei den verschiedenen Grasarten unterschiedlich. So zeigen zum Beispiel Pooideae-Gräser wie Weizen, Gerste, Roggen und Brachypodium ein frühes Ergrünen ihrer unreifen Blütenstände, während tropische Arten wie Reis und Sorghum dies nicht tun (Huang et al. 2023). Diese Befunde geben Anlass zu einer Reihe interessanter wissenschaftlicher Fragen: (1) Gibt es autotrophes Wachstum, und welche Auswirkungen hat das? (2) Welche Bedeutung hat das Ergrünen unreifer Blütenstände bei anderen Pooideae? (3) Wie beeinflussen natürliche Variationen das frühe Ergrünen der Blütenstände und deren Anpassung? Die Beantwortung jeder dieser Fragen könnte eine grundlegend neue Perspektive dafür eröffnen, wie wir die Entwicklung junger Blütenstände in Zukunft betrachten und interpretieren sollten.
Merkmale von Gerstenmeristemen
Die Etablierung, Aufrechterhaltung und Signalgebung von Blütenstandmeristemen (IM) in Getreidepflanzen sind nicht gut verstanden. Es besteht ein erheblicher Mangel an Wissen über die zelluläre Positionierung der Stammzellnische, der organisierenden Zellen und der peripheren Zone in wichtigen Kulturpflanzen wie Gerste.
Um die Ährenbildung bei Gerste besser zu verstehen, ist die Erforschung der zellulären Strukturierung der Sprossspitze unerlässlich (Thiel, Koppolu et al. 2021). Im Rahmen der von der DFG geförderten Forschergruppe (FOR5235)Cereal Stem Cell Systems (CSCS) untersuchen wir die Rolle von WUS-verwandten Homeobox (WOX)-Proteinen und stellen die Hypothese auf, dass Gersten-WOX (HvWOX)-Gene für die Etablierung und Aufrechterhaltung der Gersten-IM von entscheidender Bedeutung sind, was auf eine neu entwickelte und abweichende Genregulation in Gerste und möglicherweise Triticeae hinweist.
scroll top
Mitarbeitende
scroll top
Publikationen
Abbai R:
Genetic cornerstones of grain yield determination in spike-branching wheat (Triticum turgidum L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik (2024) 131 pp.
Abbai R, Golan G, Longin C F H, Schnurbusch T:
Grain yield trade-offs in spike-branching wheat can be mitigated by elite alleles affecting sink capacity and post-anthesis source activity. J. Exp. Bot. 75 (2024) 88-102. https://dx.doi.org/10.1093/jxb/erad373
Golan G, Weiner J, Zhao Y, Schnurbusch T:
Agroecological genetics of biomass allocation in wheat uncovers genotype interactions with canopy shade and plant size. New Phytol. 242 (2024) 107-120. https://dx.doi.org/10.1111/nph.19576
Huang Y, Maurer A, Giehl R F H, Zhao S, Golan G, Thirulogachandar V, Li G, Zhao Y, Trautewig C, Himmelbach A, Börner A, Jayakodi M, Stein N, Mascher M, Pillen K, Schnurbusch T:
Dynamic phytomeric growth contributes to local adaptation in barley. Mol. Biol. Evol. 41 (2024) msae011. https://dx.doi.org/10.1093/molbev/msae011
Huang Y, Schnurbusch T:
The birth and death of floral organs in cereal crops. Annu. Rev. Plant Biol. 75 (2024) 427-458. https://dx.doi.org/10.1146/annurev-arplant-060223-041716
Jiang G, Koppolu R, Rutten T, Hensel G, Lundqvist U, Tandron Moya Y A, Huang Y, Rajaraman J, Poursarebani N, von Wirén N, Kumlehn J, Mascher M, Schnurbusch T:
Non-cell-autonomous signaling associated with barley ALOG1 specifies spikelet meristem determinacy. Curr. Biol. 34 (2024) 2344-2358 e2345. https://doi.org/10.1016/j.cub.2024.04.083
Rutten T, Thirulogachandar V, Huang Y, Shanmugaraj N, Koppolu R, Ortleb S, Hensel G, Kumlehn J, Melzer M, Schnurbusch T:
Anatomical insights into the vascular lay-out of the barley rachis: implications for transport and spikelet connection. Ann. Bot. 133 (2024) 983-996. https://dx.doi.org/10.1093/aob/mcae025
Schmidt C, Hinterberger V, Philipp N, Reif J C, Schnurbusch T:
Hybrid grain production in wheat benefits from synchronized flowering and high female flower receptivity. J. Exp. Bot. (2024) accepted. https://dx.doi.org/10.1093/jxb/erae430
Tawale A B:
Phenotype and transcriptome analysis of an ancestral alleles effect on the durum wheat spike. (Master Thesis) Tirupati, India, Indian Institute of Science Education and Research (IISER) (2024) 69 pp.
Thirulogachandar V, Govind G, Hensel G, Kale S M, Kuhlmann M, Eschen-Lippold L, Rutten T, Koppolu R, Rajaraman J, Palakolanu S R, Seiler C, Sakuma S, Jayakodi M, Lee J, Kumlehn J, Komatsuda T, Schnurbusch T, Sreenivasulu N:
HOMEOBOX2, the paralog of SIX-ROWED SPIKE1/HOMEOBOX1, is dispensable for barley spikelet development. J. Exp. Bot. 75 (2024) 2900–2916. https://dx.doi.org/10.1093/jxb/erae044
Babanna S T:
Elucidating the role of phytochromes in the development and response of wheat and barley plants to canopy shade. (Master Thesis) Tirupati, India, Indian Institute of Science Education and Research (IISER) (2023)
Golan G, Abbai R, Schnurbusch T:
Exploring the tradeoff between individual fitness and community performance of wheat crops using simulated canopy shade. Plant Cell Environ. 46 (2023) 3144-3157. https://dx.doi.org/10.1111/pce.14499
Heliel O F H:
Functional evaluation of RAMOSA2 cis-regulatory regions from different grass species for shaping inflorescence architecture in barley. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik (2023) 168 pp.
Huang Y, Kamal R, Shanmugaraj N, Rutten T, Thirulogachandar V, Zhao S, Hoffie I, Hensel G, Rajaraman J, Moya Y A T, Hajirezaei M-R, Himmelbach A, Poursarebani N, Lundqvist U, Kumlehn J, Stein N, von Wirén N, Mascher M, Melzer M, Schnurbusch T:
A molecular framework for grain number determination in barley. Sci. Adv. 9 (2023) eadd0324. https://dx.doi.org/10.1126/sciadv.add0324
Huang Y, Schnurbusch T:
Femaleness for improving grain yield potential and hybrid production in barley. J. Exp. Bot. 74 (2023) 4896-4898. https://dx.doi.org/10.1093/jxb/erad257
Jiang G:
HvALOG1, an ALOG transcription factor regulates spikelet meristem determinacy and organ boundary formation in barley inflorescence. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik (2023) 156 pp.
Muqaddasi Q H, Muqaddasi R K, Ebmeyer E, Korzun V, Argillier O, Mirdita V, Reif J C, Ganal M W, Röder M S:
Genetic control and prospects of predictive breeding for European winter wheats Zeleny sedimentation values and Hagberg-Perten falling number. Theor. Appl. Genet. 136 (2023) 229. https://dx.doi.org/10.1007/s00122-023-04450-7
Sakuma S, Koppolu R:
Form follows function in Triticeae inflorescences. Breed. Sci. 73 (2023) 46-56. https://dx.doi.org/10.1270/jsbbs.22085
Shanmugaraj N:
Spatiotemporal multi-omics analyses of the barley (Hordeum vulgare L.) inflorescence reveal a multilayered regulation of developmentally programmed pre-anthesis tip degeneration. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik (2023) 193 pp.
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernandez A, Budhagatapalli N, Tandron Moya Y A, Hajirezaei M R, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock H-P, Schnurbusch T:
Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. Plant Cell 35 (2023) 3973-4001. https://dx.doi.org/10.1093/plcell/koad164
Shanmugaraj N, Rutten T, Svatoš A, Schnurbusch T, Mock H-P:
Fast and reproducible matrix deposition for MALDI mass spectrometry imaging with improved glass sublimation setup. J. Am. Soc. Mass Spectrom. 34 (2023) 513-517. https://dx.doi.org/10.1021/jasms.2c00301
Kamal R, Muqaddasi Q H, Schnurbusch T:
Genetic association of spikelet abortion with spike, grain, and shoot traits in highly-diverse six-rowed barley. Front. Plant Sci. 13 (2022) 1015609. https://dx.doi.org/10.3389/fpls.2022.1015609
Kamal R, Muqaddasi Q H, Zhao Y, Schnurbusch T:
Spikelet abortion in six-rowed barley is mainly influenced by final spikelet number with potential spikelet number acting as a suppressor trait. J. Exp. Bot. 73 (2022) 2005–2020. https://dx.doi.org/10.1093/jxb/erab529
Koppolu R, Chen S, Schnurbusch T:
Evolution of inflorescence branch modifications in cereal crops. Curr. Opin. Plant Biol. 65 (2022) 102168. https://dx.doi.org/10.1016/j.pbi.2021.102168
Koppolu R, Jiang G, Milner S G, Muqaddasi Q H, Rutten T, Himmelbach A, Guo Y, Stein N, Mascher M, Schnurbusch T:
The barley mutant multiflorus2.b reveals quantitative genetic variation for new spikelet architecture. Theor. Appl. Genet. 135 (2022) 571–590. https://dx.doi.org/10.1007/s00122-021-03986-w
Lapasiya T H:
Fine mapping of a spikelet survival QTL from wild barley that can substantially increase spikelet survival in an elite barley background. (Master Thesis) Kiel, Christian-Albrechts-Universität zu Kiel, Fakultät für Agrar- und Ernährungswissenschaften (2022)
Sayed M A, Maurer A, Schmutzer T, Schnurbusch T, Börner A, Hansson M, Pillen K, Youssef H M:
Genome-wide association study of salt tolerance-related traits during germination and seedling development in an intermedium-spike barley collection. Int. J. Mol. Sci. 23 (2022) 11060. https://dx.doi.org/10.3390/ijms231911060
Janaki Ramayya P, Vinukonda V P, Singh U M, Alam S, Venkateshwarlu C, Vipparla A K, Dixit S, Yadav S, Abbai R, Badri J, T R, Phani Padmakumari A, Singh V K, Kumar A:
Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance. PLoS One 16 (2021) e0256721. https://dx.doi.org/10.1371/journal.pone.0256721
Kaur B, Sandhu K S, Kamal R, Kaur K, Singh J, Röder M S, Muqaddasi Q H:
Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: applications, challenges, and prospects. Plants 10 (2021) 1989. https://dx.doi.org/10.3390/plants10101989
Muqaddasi Q H, Kamal R, Mirdita V, Rodemann B, Ganal M W, Reif J C, Röder M S:
Genome-wide association studies and prediction of tan spot (Pyrenophoratritici-repentis) infection in European winter wheat via different marker platforms. Genes 12 (2021) 490. https://dx.doi.org/10.3390/genes12040490
Selvaraj R, Singh A K, Singh V K, Abbai R, Habde S V, Singh U M, Kumar A:
Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality. Sci. Rep. 11 (2021) 10082. https://dx.doi.org/10.1038/s41598-021-87964-8
Thiel J, Koppolu R, Trautewig C, Hertig C, Kale S M, Erbe S, Mascher M, Himmelbach A, Rutten T, Esteban E, Pasha A, Kumlehn J, Provart N J, Vanderauwera S, Frohberg C, Schnurbusch T:
Transcriptional landscapes of floral meristems in barley. Sci. Adv. 7 (2021) eabf0832. https://dx.doi.org/10.1126/sciadv.abf0832
Thirulogachandar V, Koppolu R, Schnurbusch T:
Strategies of grain number determination differentiate barley row-types. J. Exp. Bot. 72 (2021) 7754–7768. https://dx.doi.org/10.1093/jxb/erab395
Thirulogachandar V, Schnurbusch T:
Spikelet stop determines the maximum yield potential stage in barley. J. Exp. Bot. 72 (2021) 7743–7753. https://dx.doi.org/10.1093/jxb/erab342
Wolde G M, Schreiber M, Trautewig C, Himmelbach A, Sakuma S, Mascher M, Schnurbusch T:
Genome-wide identification of loci modifying spike-branching in tetraploid wheat. Theor. Appl. Genet. 134 (2021) 1925–1943. https://dx.doi.org/10.1007/s00122-020-03743-5
Abbai R, Singh V K, Snowdon R J, Kumar A, Schnurbusch T:
Seeking crops with balanced parts for the ideal whole. Trends Plant Sci. 25 (2020) 1189-1193. https://dx.doi.org/10.1016/j.tplants.2020.08.011
Börner A, Alqudah A M, Alomari D Z, Brassac J, Cardelli M, Esquisabel E, Impe D, Koppolu R, Lohwasser U, Muqaddasi Q H, Nagel M, Rehman Arif M A, Röder M S, Schierenbeck M, Simón M R, Tarawneh R, Uranga J P, Zaynali Nezhad K:
Items from Germany. Ann. Wheat Newsl. 66 (2020) 12-23.
Poursarebani N, Trautewig C, Melzer M, Nussbaumer T, Lundqvist U, Rutten T, Schmutzer T, Brandt R, Himmelbach A, Altschmied L, Koppolu R, Youssef H M, Sibout R, Dalmais M, Bendahmane A, Stein N, Xin Z, Schnurbusch T:
COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nat. Commun. 11 (2020) 5138. https://dx.doi.org/10.1038/s41467-020-18890-y
Sakuma S, Schnurbusch T:
Of floral fortune: tinkering with the grain yield potential of cereal crops. New Phytol. 225 (2020) 1873–1882. https://dx.doi.org/10.1111/nph.16189
Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U, Shahinnia F, Reynolds M, Langridge P, Balyan H S, Gupta P K, Schnurbusch T, Fleury D:
QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor. Appl. Genet. 133 (2020) 239–257. https://dx.doi.org/10.1007/s00122-019-03454-6
Yadala R:
Small lateral spikelet1 controls the lateral spikelet size in barley. (Master Thesis) Vadlamudi, India, Vignans Foundation For Science, Technology & Research (Deemed to be University), Department of Biotechnology (2020) 77 pp.
Youssef H M, Allam M, Boussora F, Himmelbach A, Milner S G, Mascher M, Schnurbusch T:
Dissecting the genetic basis of lateral and central spikelet development and grain traits in intermedium-spike barley (Hordeum vulgare convar. intermedium). Plants 9 (2020) 1655. https://dx.doi.org/10.3390/plants9121655
Koppolu R, Schnurbusch T:
Developmental pathways for shaping spike inflorescence architecture in barley and wheat. J. Integr. Plant Biol. 61 (2019) 278-295. https://dx.doi.org/10.1111/jipb.12771
Muqaddasi Q H, Brassac J, Koppolu R, Plieske J, Ganal M W, Röder M S:
TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci. Rep. 9 (2019) 13853. https://dx.doi.org/10.1038/s41598-019-50331-9
Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T:
Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 5182-5187. https://dx.doi.org/10.1073/pnas.1815465116
Schnurbusch T:
Wheat and Barley Biology: towards new frontiers. J. Integr. Plant Biol. 61 (2019) 198-203. https://dx.doi.org/10.1111/jipb.12782
Schnurbusch T (Ed.):
Special Issue: Barley and Wheat Biology. (Series: J. Integr. Plant Biol., Vol. 61) (2019) 179 pp.
Wolde G M, Mascher M, Schnurbusch T:
Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Mol. Genet. Genomics 294 (2019) 457–468. https://dx.doi.org/10.1007/s00438-018-1523-5
Wolde G M, Schnurbusch T:
Inferring vascular architecture of the wheat spikelet based on resource allocation in the branched headt (bht-A1) near-isogenic lines. Funct. Plant Biol. 46 (2019) 1023-1035. https://dx.doi.org/10.1071/Fp19041
Wolde G M, Trautewig C, Mascher M, Schnurbusch T:
Genetic insights into morphometric inflorescence traits of wheat. Theor. Appl. Genet. 132 (2019) 1661-1676. https://dx.doi.org/10.1007/s00122-019-03305-4
Alqudah A M, Youssef H M, Graner A, Schnurbusch T:
Natural variation and genetic make-up of leaf blade area in spring barley. Theor. Appl. Genet. 131 (2018) 873–886. https://dx.doi.org/10.1007/s00122-018-3053-2
Casas A M, Contreras-Moreira B, Cantalapiedra C P, Sakuma S, Gracia M P, Moralejo M, Molina-Cano J L, Komatsuda T, Igartua E:
Resequencing the Vrs1 gene in Spanish barley landraces revealed reversion of six-rowed to two-rowed spike. Mol. Breed. 38 (2018) 51. https://dx.doi.org/10.1007/s11032-018-0816-z
Guo Z, Chen D, Röder M S, Ganal M W, Schnurbusch T:
Genetic dissection of pre-anthesis sub-phase durations during the reproductive spike development of wheat. Plant J. 95 (2018) 909-918. https://dx.doi.org/10.1111/tpj.13998
Guo Z, Chen D, Schnurbusch T:
Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front. Plant Sci. 9 (2018) 330. https://dx.doi.org/10.3389/fpls.2018.00330
Guo Z, Liu G, Röder M S, Reif J C, Ganal M W, Schnurbusch T:
Genome-wide association analyses of plant growth traits during the stem elongation phase in wheat. Plant Biotechnol. J. 16 (2018) 2042-2052. https://dx.doi.org/10.1111/pbi.12937
Guo Z, Zhao Y, Röder M S, Reif J C, Ganal M W, Chen D, Schnurbusch T:
Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Sci. Rep. 8 (2018) 14435. https://dx.doi.org/10.1038/s41598-018-31977-3
McKim S M, Koppolu R, Schnurbusch T:
Barley inflorescence architecture. In: Stein N, Muehlbauer G J (Eds.): The Barley Genome, 1st ed. (Series: Kole, C (Ed.): Compendium of Plant Genomes) Cham: Springer (2018) ISBN 978-3-319-92528-8, 171-208. https://dx.doi.org/10.1007/978-3-319-92528-8_12
Pourkheirandish M, Kanamori H, Wu J, Sakuma S, Blattner F R, Komatsuda T:
Elucidation of the origin of “agriocrithon” based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication. Plant J. 94 (2018) 525-534. https://dx.doi.org/10.1111/tpj.13876
Alqudah A M, Schnurbusch T:
Heading date is not flowering time in spring barley. Front. Plant Sci. 8 (2017) 896. https://dx.doi.org/10.3389/fpls.2017.00896
Guo Z:
Save Floret! Save yield! Save life! 18. Kurt von Rümker-Vorträge. Vortr. Pflanzenzücht. 86 (2017) 13-20.
Guo Z:
Physiological and genetic analyses for the determination of grain number in wheat. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2017) 225 pp.
Guo Z, Chen D, Alqudah A M, Röder M S, Ganal M W, Schnurbusch T:
Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol. 214 (2017) 257-270. https://dx.doi.org/10.1111/nph.14342
Sakuma S, Lundqvist U, Kakei Y, Thirulogachandar V, Suzuki T, Hori K, Wu J, Tagiri A, Rutten T, Koppolu R, Shimada Y, Houston K, Thomas W T B, Waugh R, Schnurbusch T, Komatsuda T:
Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. Plant Physiol. 175 (2017) 1720-1731. https://dx.doi.org/10.1104/pp.17.01149
Thirulogachandar V, Alqudah A M, Koppolu R, Rutten T, Graner A, Hensel G, Kumlehn J, Bräutigam A, Sreenivasulu N, Schnurbusch T, Kuhlmann M:
Leaf primordium size specifies leaf width and vein number among row-type classes in barley. Plant J. 91 (2017) 601-612. https://dx.doi.org/10.1111/tpj.13590
Tikhenko N, Poursarebani N, Rutten T, Schnurbusch T, Börner A:
Embryo lethality in wheat-rye hybrids: dosage effect and deletion bin mapping of the responsible wheat locus. Biol. Plant. 61 (2017) 342-348. https://dx.doi.org/10.1007/s10535-016-0691-6
Venkatasubbu T:
Dosage of duplicated and antifunctionalized homeobox proteins influences leaf and spikelet development in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I - Biowissenschaften (2017) 165 pp.
Wolde G M:
Exploring modified durum wheat (Triticum durum Desf.) plant architecture. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I - Biowissenschaften (2017) 189 pp.
Youssef H M:
Genotypic and phenotypic analysis of the SPIKE row-type in barley (Hordeum vulgare L.). 18. Kurt von Rümker-Vorträge. Vortr. Pflanzenzücht. 86 (2017) 67-74.
Youssef H M, Eggert K, Koppolu R, Alqudah A M, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T:
VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat. Genet. 49 (2017) 157-161. https://dx.doi.org/10.1038/ng.3717
Youssef H M, Mascher M, Ayoub M A, Stein N, Kilian B, Schnurbusch T:
Natural diversity of inflorescence architecture traces cryptic domestication genes in barley (Hordeum vulgare L.). Genet. Resour. Crop Evol. 64 (2017) 843-853. https://dx.doi.org/10.1007/s10722-017-0504-6
Alqudah A M, Koppolu R, Wolde G M, Graner A, Schnurbusch T:
The genetic architecture of barley plant stature. Front. Genet. 7 (2016) 117. https://dx.doi.org/10.3389/fgene.2016.00117
Guo Z, Schnurbusch T:
Costs and benefits of awns. J. Exp. Bot. 67 (2016) 2533-2535. https://dx.doi.org/10.1093/jxb/erw140
Guo Z, Slafer G A, Schnurbusch T:
Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. J. Exp. Bot. 67 (2016) 4221-4230. https://dx.doi.org/10.1093/jxb/erw200
Peukert M, Thiel J, Mock H-P, Marko D, Weschke W, Matros A:
Spatiotemporal dynamics of oligofructan metabolism and suggested functions in developing cereal grains. Front. Plant Sci. 6 (2016) 1245. https://dx.doi.org/10.3389/fpls.2015.01245
Youssef H M:
Genotypic and phenotypic analysis of the spike row-type in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2016) 140 pp.
Alqudah A, Schnurbusch T:
Barley leaf area and leaf growth rates are maximized during the pre-anthesis phase. Agronomy 5 (2015) 107-129. https://dx.doi.org/10.3390/agronomy5020107
Alqudah A M:
Developmental and genetic analysis of pre-anthesis phases in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2015) 169 pp.
Guo Z, Chen D, Schnurbusch T:
Variance components, heritability and correlation analysis of anther and ovary size during the floral development of bread wheat. J. Exp. Bot. 66 (2015) 3099-3111. https://dx.doi.org/10.1093/jxb/erv117
Guo Z, Schnurbusch T:
Variation of floret fertility in hexaploid wheat revealed by tiller removal. J. Exp. Bot. 66 (2015) 5945-5958. https://dx.doi.org/10.1093/jxb/erv303
Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P, Bini F, Govind G, Rutten T, Sakuma S, Tagiri A, Wolde G M, Youssef H M, Battal A, Ciannamea S, Fusca T, Nussbaumer T, Pozzi C, Börner A, Lundqvist U, Komatsuda T, Salvi S, Tuberosa R, Uauy C, Sreenivasulu N, Rossini L, Schnurbusch T:
The genetic basis of composite spike form in barley and Miracle-Wheat"." Genetics 201 (2015) 155-165. https://dx.doi.org/10.1534/genetics.115.176628
Alqudah A M, Schnurbusch T:
Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct. Plant Biol. 41 (2014) 424-436. https://dx.doi.org/10.1071/FP13248
Alqudah A M, Sharma R, Pasam R K, Graner A, Kilian B, Schnurbusch T:
Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS One 9 (2014) e113120. https://dx.doi.org/10.1371/journal.pone.0113120
Gardiner L J, Gawronski P, Olohan L, Schnurbusch T, Hall N, Hall A:
Using genic sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in a wheat species. Plant J. 80 (2014) 895-904. https://dx.doi.org/10.1111/tpj.12660
Gawroński P, Ariyadasa R, Himmelbach A, Poursarebani N, Kilian B, Stein N, Steuernagel B, Hensel G, Kumlehn J, Sehgal S K, Gill B S, Gould P, Hall A, Schnurbusch T:
A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat. Genetics 196 (2014) 1253-1261. https://dx.doi.org/10.1534/genetics.113.158444
Koppolu R:
Six-rowed spike 4 (Vrs4) regulates spike architecture and lateral spikelet fertility in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2014) 150 pp.
Pallotta M, Schnurbusch T, Hayes J, Hay A, Baumann U, Paull J, Langridge P, Sutton T:
Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 514 (2014) 88-91. https://dx.doi.org/10.1038/nature13538
Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock H-P, Matros A:
Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 26 (2014) 3728-3744. https://dx.doi.org/10.1105/tpc.114.130211
Poursarebani N, Nussbaumer T, Šimková H, Šafář J, Witsenboer H, van Oeveren J, International Wheat Genome Sequencing C, Doležel J, Mayer K F X, Stein N, Schnurbusch T:
Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. Plant J. 79 (2014) 334-347. https://dx.doi.org/10.1111/tpj.12550
Tran V, Weier D, Radchuk R, Thiel J, Radchuk V:
Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS One 9 (2014) e109426. https://dx.doi.org/10.1371/journal.pone.0109426
Youssef H M, Koppolu R, Rutten T, Korzun V, Schweizer P, Schnurbusch T:
Genetic mapping of the labile (lab) gene: a recessive locus causing irregular spikelet fertility in labile-barley (Hordeum vulgare convar. labile). Theor. Appl. Genet. 127 (2014) 1123-1131. https://dx.doi.org/10.1007/s00122-014-2284-0
Gawroński P:
Earliness per se 3 locus from wheat (Triticum sp. L) and barley (Hordeum vulgare L.) disrupts circadian clock function. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III (2013) 136 pp.
Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U, Pourkheirandish M, Rutten T, Seiler C, Himmelbach A, Ariyadasa R, Youssef H M, Stein N, Sreenivasulu N, Komatsuda T, Schnurbusch T:
Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 13198-13203. https://dx.doi.org/10.1073/pnas.1221950110
Schnurbusch T:
Molecular genetics of tolerance to high soil boron and drought in Australian wheat and barley germplasm. (Habilitation Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III (2013) 201 pp.
Bennett D:
A genetic dissection of drought and heat tolerance related traits in bread wheat (Triticum aestivum L.). (PhD Thesis) Adelaide, Australia, The University of Adelaide (2012) 140 pp.
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P:
Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor. Appl. Genet. 124 (2012) 697-711. https://dx.doi.org/10.1007/s00122-011-1740-3
Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T:
Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor. Appl. Genet. 125 (2012) 255-271. https://dx.doi.org/10.1007/s00122-012-1831-9
Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T:
Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor. Appl. Genet. 125 (2012) 1473-1485. https://dx.doi.org/10.1007/s00122-012-1927-2
Bowne J B, Erwin T A, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U:
Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol. Plant 5 (2012) 418-429. https://dx.doi.org/10.1093/mp/ssr114
Gawroński P, Schnurbusch T:
High density-mapping of the earliness per se-3Am (Eps-3Am) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L. Mol. Breed. 30 (2012) 1097-1108. https://dx.doi.org/10.1007/s11032-011-9697-0
Miedaner T, Risser P, Paillard S, Schnurbusch T, Keller B, Hartl L, Holzapfel J, Korzun V, Ebmeyer E, Utz H F:
Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol. Breed. 29 (2012) 731-742. https://dx.doi.org/10.1007/s11032-011-9586-6
Sreenivasulu N, Schnurbusch T:
A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 17 (2012) 91-101. https://dx.doi.org/10.1016/j.tplants.2011.11.003
Youssef H M, Koppolu R, Schnurbusch T:
Re-sequencing of vrs1 and int-c loci shows that labile barleys (Hordeum vulgare convar. labile) have a six-rowed genetic background. Genet. Resour. Crop Evol. 59 (2012) 1319-1328. https://dx.doi.org/10.1007/s10722-011-9759-5
Edwards J:
A genetic analysis of drought related traits in hexaploid wheat. (PhD Thesis) Adelaide/Australia, School of Agriculture, Food and Wine, Discipline of Plant Breeding and Genetics Australian Centre for Plant Functional Genomics, The University of Adelaide, Australia (2011) 233 pp.
Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh S A, Tyerman S D, Langridge P, Sutton T:
Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 153 (2010) 1706-1715. https://dx.doi.org/10.1104/pp.110.158832
Schnurbusch T, Hayes J, Sutton T:
Boron toxicity tolerance in wheat and barley: Australian perspectives. Breed. Sci. 60 (2010) 297-304. https://dx.doi.org/10.1270/jsbbs.60.297
Izanloo A, Condon A G, Langridge P, Tester M, Schnurbusch T:
Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J. Exp. Bot. 59 (2008) 3327-3346. https://dx.doi.org/10.1093/jxb/ern199
Schnurbusch T, Langridge P, Sutton T:
The Bo1-specific PCR marker AWW5L7 is predictive of boron tolerance status in a range of exotic durum and bread wheats. Genome 51 (2008) 963-971. https://dx.doi.org/10.1139/G08-084
Schnurbusch T, Collins N C, Eastwood R F, Sutton T, Jefferies S P, Langridge P:
Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor. Appl. Genet. 115 (2007) 451-461. https://dx.doi.org/10.1007/s00122-007-0579-0
Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal H S:
An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor. Appl. Genet. 115 (2007) 301-312. https://dx.doi.org/10.1007/s00122-007-0543-z
Sutton T, Baumann U, Hayes J, Collins N C, Shi B J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P:
Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318 (2007) 1446-1449. https://dx.doi.org/10.1126/science.1146853
Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B:
Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet. 115 (2007) 697-708. https://dx.doi.org/10.1007/s00122-007-0601-6
scroll top