Phytoantibodies

Research Priorities

Head: Prof. Dr. Udo Conrad

The research group is concerned with the production of recombinant proteins in transgenic plants and with simple and innovative methods for the purification of these proteins. In addition, the group is working on the targeted degradation of specific proteins in plants in order to block their function.

An important subject area includes work on Molecular F(Ph)arming. One focus of this work is the expression of repetitive proteins in plants in order to produce new biomaterials. Spider silk proteins are in the focus of interest here. During evolution, spiders have perfected the production and use of very different protein-based silk materials. These silk fibres have extraordinary properties that far outperform technical fibres in terms of strength and elasticity. The silk used by spiders as a holding thread and as a frame thread for their nets has very special mechanical properties: it is five times stronger than steel and three times tougher than Kevlar (p-Aramid), the best man-made synthetic fibre. The catching thread silk, e.g. the flagelliform silk, is less firm than the carrying thread silk, but can be stretched to several times its length before it tears. The silk used as a catch thread therefore has a very high elasticity and stretchability. It can therefore absorb the kinetic energy of the prey very well. The work has therefore concentrated on the expression of the main constituents of the silk, the proteins MaSp1 (Scheller et al., 2001) and MaSp2 as well as the most important constituent of the flagelliform silk, the protein FLAG. It is assumed that the size of the bearing silk proteins is a key factor for the mechanical properties of spun fibres, as all spiders investigated so far produce very high molecular weight spider silk proteins. For this reason, the production of spider silk proteins of native size (over 200 kDa) in plants is of central interest. As a method we use posttranslational linkage in vitro by transglutaminase (Weichert et al., 2014) and in vivo by intein-based protein splicing (Hauptmann et al., 2013a, Hauptmann et al., 2013b). "Protein splicing" was also used for seed-specific accumulation of stable high molecular weight spider silk protein multimers (Weichert et al., 2016). ELPylated spider silk derivatives proved to be non-cytotoxic and non-hemolytic biopolymers (Hauptmann et al., 2015). Mechanical characterization is performed by cooperation partners at Fraunhofer IWM Halle (Junghans et al., 2006; Junghans et al., 2008, Weichert et al., 2014, Hauptmann et al., 2013).

A second focus is the production of therapeutic antibodies and vaccines in plants. Transgenic plants have been used as production tools for therapeutic proteins for 20 years. In particular, the development of scalable and inexpensive purification systems is an essential condition for the further use of this technology. For both classes of therapeutic proteins, ELPylation has been established as a suitable method for expression enhancement and efficient purification (Floss et al., 2008, Floss et al. 2009a, Floss et al. 2009b, Floss et al. 2010a, Floss et al. 2010b, Conrad et al., 2011, Phan and Conrad, 2011).

Current work on avian influenza antigens focuses on the production of highly immunogenic haemagglutinin multimers in plants. This work is done in cooperation with the Institute for Biotechnology in Hanoi, Vietnam, with the company NAVETCO, Ho Chi Minh City, Vietnam and with the Friedrich-Löffler-Institute on Riems. We were able to show that haemagglutin trimers produced in plants induce potentially neutralizing immune responses in mice (Phan et al., 2013). By exploiting the S-tag-S-protein interaction, we succeeded in producing haemagglutinin oligomers in planta that induced neutralizing immune responses in mice (Phan et al., 2917). Derated immune responses could be produced with raw extracts from Nicotiana benthamiana plants. This minimization of downstream processing enables rapid vaccine production at low cost, as required for veterinary applications. Furthermore, we have generated oligomers in vitro using Streptag-StrepTactin interaction, which are also neutralizing immune responses in mice (Phan et al., 2018).

Another focus of our work is the degradation of specific proteins in plants. We have shown that GFP (green fluorescent protein) can be specifically degraded in cytosol (Baudisch et al., 2018). GFP is recognized by a specific nanobody (VHH). This nanobody is fused with an F-box protein. The F-box protein-nanobody fusion protein with the bound GFP (F-box from Drosophila melanogaster) is transported into the proteasome with the aid of plant proteins and degraded. This also functions with GFP fusion proteins, as can be seen from the comparison of 1a) and 1b) in the figure.

In a similar approach, we fused the specific nanobody with the protein BTB (from human cells) and in this way we also induced the degradation of a GFP fusion protein, as shown by the comparison of 2a) and 2b). By such experiments from the toolbox of synthetic biology, we aim to specifically inhibit selected protein functions or to influence the interaction with pathogens. Here, we are cooperating with the Chromosome Structure and Function group at IPK and with AIPlanta, Neustadt.

Methodical focus

Phage Display Technology

In the phytoantibody group recombinant antibodies are generated by phage display screening. Various semisynthetic libraries (scFv and VH, VHH) are available for this purpose. In this way, various recombinant antibodies have been generated and characterized within the framework of national and international cooperations. This includes recombinant antibodies against plant pathogen antigens and antigens of human pathogens as well as recombinant antibodies against phytohormones and regulatory proteins. 

Inverse Transition Cycling

ELPylated proteins can be purified by utilizing special properties of ELP. This is achieved by exploiting the fact that ELPs are reversible depending on salt concentration and temperature. At lower temperatures and without salt they dissolve again. The precipitates are separated by centrifugation (cITC) or filtration (mITC). Scalable protocols have been developed for various applications (spider silk proteins, avian flu antigens) (Phan and Conrad, 2011, Heppner et al., 2016).

Publications

Author
Title
2023

Phan H T, Tran H X, Ho T T, Pham V T, Trinh V T, Nguyen T T, Pham N B, Chu H H, Conrad U:

Plant crude extracts containing oligomeric hemagglutinins protect chickens against highly Pathogenic Avian Influenza Virus after one dose of immunization. Vet. Res. Commun. 47 (2023) 191-205. https://dx.doi.org/10.1007/s11259-022-09942-3

2022

Demidov D, Lermontova I, Moebes M, Kochevenko A, Fuchs J, Weiss O, Rutten T, Sorge E, Zuljan E, Giehl R F H, Mascher M, Somasundaram S, Conrad U, Houben A:

Haploid induction by nanobody targeted ubiquitin-proteasome-based degradation of EYFP-tagged CENH3 in Arabidopsis thaliana. J. Exp. Bot. 73 (2022) 7243–7254. https://dx.doi.org/10.1093/jxb/erac359

Ho T T, Trinh V T, Tran H X, Le P T T, Nguyen T T, Hoang H T T, Pham M D, Conrad U, Pham N B, Chu H H:

The immunogenicity of plant-based COE-GCN4pII protein in pigs against the highly virulent porcine epidemic diarrhea virus strain from genotype 2. Front. Vet. Sci. 9 (2022) 940395. https://dx.doi.org/10.3389/fvets.2022.940395

Phan H T, Conrad U:

Production of influenza H5 vaccine oligomers in plants. In: Brun A (Ed.): Vaccine technologies for veterinary viral diseases: methods and protocols. 2nd Ed. (Series: Methods in molecular biology, Vol. 2465) New York: Springer (2022) 97-107. https://dx.doi.org/10.1007/978-1-0716-2168-4_5

Sorge E:

Gezielter Proteinabbau in Pflanzen mittels chimärer E3-Ubiquitin-Ligasen. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2022) 137 pp.

2021

Chu H H, Pham N B, Phan H T, Conrad U, Ho T T, Pham V T, Vu T H:

Plant-based vaccine against avian influenza: from research to oriented application in Vietnam. (The Vietnamese name of the book: Công nghệ tạo vaccine cúm gia cầm từ thực vật: từ nghiên cứu đến định hướng ứng dụng tại Việt Nam). Hanoi, Vietnam: Vietnam Science and Technics Publishing House (2021) ISBN: 978-604-9985-84-3, 304 pp.

Sorge E, Demidov D, Lermontova I, Houben A, Conrad U:

Engineered degradation of EYFP-tagged CENH3 via the 26S proteasome pathway in plants. PLoS One 16 (2021) e0247015. https://dx.doi.org/10.1371/journal.pone.0247015

2020

Daoud M N M:

Phage display-based screening for novel recombinant antibody fragments against effector proteins from Ustilago maydis. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2020) 72 pp.

El Araiedh A:

Isolation and characterization of recombinant antibodies against an allergenic peptide of cereal seed proteins. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2020) 87 pp.

Ho T T, Nguyen G T, Pham N B, Le V P, Trinh T B N, Vu T H, Phan H T, Conrad U, Chu H H:

Plant-derived trimeric CO-26K-equivalent epitope induced neutralizing antibodies against Porcine epidemic diarrhea virus. Front. Immunol. 11 (2020) 2152. https://dx.doi.org/10.3389/fimmu.2020.02152

Mossner S, Phan H T, Triller S, Moll J M, Conrad U, Scheller J:

Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS One 15 (2020) e0230804. https://dx.doi.org/10.1371/journal.pone.0230804

Phan H T, Pham V T, Ho T T, Pham N B, Chu H H, Vu T H, Abdelwhab E M, Scheibner D, Mettenleiter T C, Hanh T X, Meister A, Gresch U, Conrad U:

Immunization with plant-derived multimeric H5 hemagglutinins protect chicken against highly pathogenic avian influenza virus H5N1. Vaccines 8 (2020) 593. https://dx.doi.org/10.3390/vaccines8040593

2019

Augustinus B:

Expression, purification, and characterization of Hordeum vulgare LOB domain protein (Vrs4/HvRA2). (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2019)

Pham V T, Ho T T, Phan H T, Le T H, Pham N B, Conrad U, Vu T H, Chu H H:

A plant-based artificial haemagglutinin (A/H5N1) strongly induced neutralizing immune responses in mice. Appl. Sci. 9 (2019) 4605. https://dx.doi.org/10.3390/app9214605

Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V:

Arabidopsis NSE4 proteins act in somatic nuclei and meiosis to ensure plant viability and fertility. Front. Plant Sci. 10 (2019) 774. https://dx.doi.org/10.3389/fpls.2019.00774

2018

Al Habri Z:

Plant co-expression of StrepTactin/StrepTactin-TP with Hemagglutinin H5. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Institut für Pharmazie (2018) 58 pp.

Baudisch B, Pfort I, Sorge E, Conrad U:

Nanobody-directed specific degradation of proteins by the 26S-proteasome in plants. Front. Plant Sci. 9 (2018) 130. https://dx.doi.org/10.3389/fpls.2018.00130

Fagbadebo F O:

Phage display-based selection and characterization of specific nanobodies against hyper interleukin-11. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Institut für Pharmazie (2018) 80 pp.

Gelová Z, ten Hoopen P, Novák O, Motyka V, Pernisová M, Dabravolski S, Didi V, Tillack I, Oklešťková J, Strnad M, Hause B, Haruštiaková D, Conrad U, Janda L, Hejátko J:

Antibody-mediated modulation of cytokinins in tobacco: organ-specific changes in cytokinin homeostasis. J. Exp. Bot. 69 (2018) 441-454. https://dx.doi.org/10.1093/jxb/erx426

Kutschan K J:

Identifikation und Charakterisierung von rekombinanten Antikörpern gegen pflanzliche Reserveproteine. (Bachelor Thesis) Köthen, Hochschule Anhalt, Studiengang Biotechnologie (2018) 84 pp.

Phan H T, Gresch U, Conrad U:

In vitro-formulated oligomers of strep-tagged avian influenza haemagglutinin produced in plants cause neutralizing immune responses. Front. Bioeng. Biotechnol. 6 (2018) 115. https://dx.doi.org/10.3389/fbioe.2018.00115

Phang H, Conrad U, Ho T T:

Oligomeric vaccines from plants by S-tag-S-protein fusions. (Industrieanmeldung), Veröffentlichung: 28.06.2018, IPK-Nr. 2016/03. WO 2018/115305 (2017). WO2017/067714 (2018).

2017

Brünner B:

Expression von Shiga-like Toxoiden in Pflanzen. (Bachelor Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2017) 48 pp.

Pham N B, Ho T T, Nguyen G T, Le T T, Le N T, Chang H C, Pham M D, Conrad U, Chu H H:

Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. J. Nanobiotechnol. 15 (2017) 69. https://dx.doi.org/10.1186/s12951-017-0305-2

Phan H T, Ho T T, Chu H H, Vu T H, Gresch U, Conrad U:

Neutralizing immune responses induced by oligomeric H5N1-hemagglutinins from plants. Vet. Res. 48 (2017) 53. https://dx.doi.org/10.1186/s13567-017-0458-x

Sandmann M, Talbert P, Demidov D, Kuhlmann M, Rutten T, Conrad U, Lermontova I:

Targeting of A. thaliana KNL2 to centromeres depends on the conserved CENPC-k motif in its C-terminus. Plant Cell 29 (2017) 144-155. https://dx.doi.org/10.1105/tpc.16.00720

2016

Heppner R, Weichert N, Schierhorn A, Conrad U, Pietzsch M:

Low-tech, pilot scale purification of a recombinant spider silk protein analog from tobacco leaves. Int. J. Mol. Sci. 17 (2016) 1687. https://dx.doi.org/10.3390/ijms17101687

Hertig C:

Characterization and interaction studies of two-component signaling components expressed in barley endosperm transfer cells. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Institut für Biologie (2016) 72 pp.

Ho T T:

Oligomeric avian flu hemagglutinins from plants based on S tag–S protein interaction induce potentially neutralizing immune responses in mice. (Master Thesis) Hanoi, Vietnam, University of Science and Technology of Hanoi, Bio-Pharmacology (2016) 49 pp.

Hofbauer A, Melnik S, Tschofen M, Arcalis E, Phan H T, Gresch U, Lampel J, Conrad U, Stoger E:

The encapsulation of hemagglutinin in protein bodies achieves a stronger immune response in mice than the soluble antigen. Front. Plant Sci. 7 (2016) 142. https://dx.doi.org/10.3389/fpls.2016.00142

Ma W, Schubert V, Martis M M, Hause G, Liu Z, Shen Y, Conrad U, Shi W, Scholz U, Taudien S, Cheng Z, Houben A:

The distribution of alpha-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosome Res. 24 (2016) 393-405. https://dx.doi.org/10.1007/s10577-016-9529-5

Phan H T, Conrad U:

Plant-based vaccine antigen production. In: Brun A (Ed.): Vaccine technologies for veterinary viral diseases: methods and protocols. (Series: Methods in molecular biology, Vol. 1349) New York: Springer (2016) ISBN 978-1-4939-3007-4, 35-47. https://dx.doi.org/10.1007/978-1-4939-3008-1_3

Sorge E:

Analysen zur Interaktion von ASK-Proteinvarianten mit F-Box-Proteinen. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2016) 41 pp.

Staroske N, Conrad U, Kumlehn J, Hensel G, Radchuk R, Erban A, Kopka J, Weschke W, Weber H:

Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. J. Exp. Bot. 67 (2016) 2675-2687. https://dx.doi.org/10.1093/jxb/erw102

Topp E, Irwin R, McAllister T, Lessard M, Joensuu J J, Kolotilin I, Conrad U, Stöger E, Mor T, Warzecha H, Hall J C, McLean M D, Cox E, Devriendt B, Potter A, Depicker A, Virdi V, Holbrook L, Doshi K, Dussault M, Friendship R, Yarosh O, Yoo H S, MacDonald J, Menassa R:

The case for plant-made veterinary immunotherapeutics. Biotechnol. Adv. 34 (2016) 597-604. https://dx.doi.org/10.1016/j.biotechadv.2016.02.007

Weichert N, Hauptmann V, Helmold C, Conrad U:

Seed-specific expression of spider silk protein multimers causes long-term stability. Front. Plant Sci. 7 (2016) 6. https://dx.doi.org/10.3389/fpls.2016.00006

Weselek A:

Multimerisierung von Nanobodies durch Intein-vermitteltes trans-splicing in Pflanzen. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III, Institut für Agrar- und Ernährungswissenschaften (2016) 56 pp.

2015

Hauptmann V:

Heterologe Expression hochmolekularer repetitiver Spinnenseiden-basierter Proteine in planta sowie deren mechanische und immunologische Charakterisierung. (PhD Thesis, kumulativ) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2015) 75 pp.

Hauptmann V, Menzel M, Weichert N, Reimers K, Spohn U, Conrad U:

In planta production of ELPylated spidroin-based proteins results in non-cytotoxic biopolymers. BMC Biotechnol. 15 (2015) 9. https://dx.doi.org/10.1186/s12896-015-0123-2

Hensel G, Floss D M, Arcalis E, Sack M, Melnik S, Altmann F, Rutten T, Kumlehn J, Stoger E, Conrad U:

Transgenic production of an anti HIV antibody in the barley endosperm. PLoS One 10 (2015) e0140476. https://dx.doi.org/10.1371/journal.pone.0140476

Klein B:

Funktionelle Charakterisierung von F-Box-Fusionsproteinen aus Pflanzen. (Bachelor Thesis) Hannover, Leibniz-Universität Hannover, Studiengang Pflanzenbiotechnologie (2015) 47 pp.

Schinköthe A:

Produktion, Reinigung und Analyse von oligomeren Vogelgrippeantigenen in Pflanzen. (Bachelor Thesis) Jena, Ernst-Abbe-Hochschule Jena, Fachbereich Medizintechnik/Biotechnologie, Studiengang Biotechnologie (2015) 38 pp.

2014

Heigl F:

Charakterisierung von rekombinanten Antikörpern gegen Chromatinproteine. (Bachelor Thesis) Universität Regensburg (2014) 58 pp.

Koch F:

Isolation, Modifizierung und Charakterisierung von nanobodies gegen Interleukin-12. (Master Thesis) Jena, Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät (2014) 47 pp.

Kolotilin I, Topp E, Cox E, Devriendt B, Conrad U, Joensuu J, Stöger E, Warzecha H, McAllister T, Potter A, McLean M D, Hall J C, Menassa R:

Plant-based solutions for veterinary immunotherapeutics and prophylactics. Vet. Res. 45 (2014) 375 Highly accessed. https://dx.doi.org/10.1186/s13567-014-0117-4

Peter A-C:

Erzeugung rekombinanter Antikörper gegen das Zentromerprotein CENH3 Alpha. (Bachelor Thesis) Emden, Hochschule Emden/Leer, Fachbereich Technik (2014) 42 pp.

Phan H T, Hause B, Hause G, Arcalis E, Stoger E, Maresch D, Altmann F, Joensuu J, Conrad U:

Influence of elastin-like polypeptide and hydrophobin on recombinant hemagglutinin accumulations in transgenic tobacco plants. PLoS One 9 (2014) e99347. https://dx.doi.org/10.1371/journal.pone.0099347

Saalbach I, Mora-Ramírez I, Weichert N, Andersch F, Guild G, Wieser H, Koehler P, Stangoulis J, Kumlehn J, Weschke W, Weber H:

Increased grain yield and micronutrient concentration in transgenic winter wheat by ectopic expression of a barley sucrose transporter. J. Cereal Sci. 60 (2014) 75-81. https://dx.doi.org/10.1016/j.jcs.2014.01.017

Weichert N, Hauptmann V, Conrad U:

Transglutamination enables production and characterization of native-sized spider silk-ELP fusion proteins from genetically engineered plants. ISB News Report (2014) 5-8.

Weichert N, Hauptmann V, Menzel M, Schallau K, Gunkel P, Hertel T C, Pietzsch M, Spohn U, Conrad U:

Transglutamination allows production and characterization of native-sized ELPylated spider silk proteins from transgenic plants. Plant Biotechnol. J. 12 (2014) 265-275. https://dx.doi.org/10.1111/pbi.12135

Zábrady M, Hrdinová V, Müller B, Conrad U, Hejátko J, Janda L:

Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies. PLoS One 9 (2014) e109875. https://dx.doi.org/10.1371/journal.pone.0109875

2013

Floss D M, Conrad U, Rose-John S, Scheller J:

ELP fusion technology for biopharmaceuticals. In: Schmidt S R (Ed.): Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken, NJ: Wiley (2013) ISBN 978-0-470-64627-4, 211-226. https://dx.doi.org/10.1002/9781118354599.ch14

Hauptmann V, Weichert N, Menzel M, Knoch D, Paege N, Scheller J, Spohn U, Conrad U, Gils M:

Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res. 22 (2013) 369-377. https://dx.doi.org/10.1007/s11248-012-9655-6

Hauptmann V, Weichert N, Rakhimova M, Conrad U:

Spider silks from plants - a challenge to create native-sized spidroins. Biotechnol. J. 8 (2013) 1183-1192. https://dx.doi.org/10.1002/biot.201300204

Heinze M, Herre M, Massalski C, Hermann I, Conrad U, Roos W:

Signal transfer in the plant plasma membrane: phospholipase A2 is regulated via an inhibitory Gα protein and a cyclophilin. Biochem. J. 450 (2013) 497-509. https://dx.doi.org/10.1042/Bj20120793

Phan H T, Floss D M, Conrad U:

Veterinary vaccines from transgenic plants: highlights of two decades of research and a promising example. Curr. Pharm. Des. 19 (2013) 5601-5611. https://dx.doi.org/10.2174/1381612811319310014

Phan H T, Pohl J, Floss D M, Rabenstein F, Veits J, Le B T, Chu H H, Hause G, Mettenleiter T, Conrad U:

ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. Plant Biotechnol. J. 11 (2013) 582-593. https://dx.doi.org/10.1111/pbi.12049

Sorge E:

Herstellung und Charakterisierung einer Komponente des Proteinabbauweges in Pflanzen. (Bachelor Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2013) 46 pp.

2012

Floss D M, Conrad U:

Plant molecular pharming – veterinary applications. In: Meyers R A (Ed.): Encyclopedia of sustainability science and technology, Vol. 11. (Series: Springer reference) New York [u.a.]: Springer (2012) ISBN 978-1-441-90852-0, 8073-8080. https://dx.doi.org/10.1007/978-1-4419-0851-3_270

Hauptmann V, Gils M, Conrad U, Phan H T:

Methods of producing and purifying polymeric proteins in transgenic plants (Patent). EP 2518081, Granted on 31.10.2012, IPK-Nr. 2011/07 (2012).

Hoang P T:

ELPylated avian flu vaccines from plants: Improvement of expression and development of a new purification strategy. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2012) 128 pp.

Junker A, Mönke G, Rutten T, Keilwagen J, Seifert M, Thi T M, Renou J P, Balzergue S, Viehover P, Hähnel U, Ludwig-Müller J, Altschmied L, Conrad U, Weisshaar B, Bäumlein H:

Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J. 71 (2012) 427-442. https://dx.doi.org/10.1111/j.1365-313X.2012.04999.x

Knopf J:

Produktion, Reinigung und immunologische Charakterisierung von Vogelgrippe-Neuraminidaseantigenen aus transgenem Tabak. (Master Thesis) Köthen, Hochschule Anhalt (FH) (2012) 86 pp.

Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hähnel U, Junker A, Weisshaar B, Conrad U, Bäumlein H, Altschmied L:

Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 40 (2012) 8240-8254. https://dx.doi.org/10.1093/nar/gks594

Njo D:

Expression and characterization of the TB antigen (Ag85B) hydrophobin fusion protein in tobacco (Nicotiana benthamiana) leaves. (Master Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Masterkurs für Pharmazeutische Biotechnologie (2012) 76 pp.

Paege N:

Produktion und Charakterisierung von ELP-Multimeren in Pflanzen. (Diploma Thesis) Berlin, Technische Universität (2012) 109 pp.

Staroske N:

ABA-Immunmodulierung sich entwickelnder Gerstenkaryopsen. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2012) 147 pp.

2011

Banik A:

Funktionelle Charakterisierung von rekombinanten Antikörpern gegen Abszisinsäurerezeptoren. (Bachelor Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2011) 55 pp.

Conrad U, Plagmann I, Malchow S, Sack M, Floss D M, Kruglov A A, Nedospasov S A, Rose-John S, Scheller J:

ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. J. 9 (2011) 22–31. https://dx.doi.org/10.1111/j.1467-7652.2010.00523.x

Knoch D:

Expression, Reinigung und Charakterisierung von Spinnenseidenproteinmultimeren aus Tabak. (Bachelor Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2011) 65 pp.

Mielke K, Forner S, Kramell R, Conrad U, Hause B:

Cell-specific visualization of jasmonates in wounded tomato and Arabidopsis leaves using jasmonate-specific antibodies. New Phytol. 190 (2011) 1069-1080. https://dx.doi.org/10.1111/j.1469-8137.2010.03638.x

Phan H T, Conrad U:

Membrane-based inverse transition cycling: an improved means for purifying plant-derived recombinant protein-elastin-like polypeptide fusions. Int. J. Mol. Sci. 12 (2011) 2808-2821. https://dx.doi.org/10.3390/ijms12052808

Pohl J:

Produktion von oligomeren Vogelgrippeantigenen als ELP-Fusionsproteine in Pflanzen. (Bachelor Thesis) Köthen, Hochschule Anhalt (FH) (2011) 67 pp.

Rother E:

Herstellung und Charakterisierung von scFv´s gegen den Phytohormonrezeptor RCAR1. (Bachelor Thesis) Mittweida, Hochschule Mittweida (FH) (2011) 69 pp.

Saumonneau A, Rottier K, Conrad U, Popineau Y, Francin-Allami M, Gueguen J:

Expression of a new chimeric protein with a highly repeated sequence in tobacco cells. Plant Cell Rep. 30 (2011) 1289-1302. https://dx.doi.org/10.1007/s00299-011-1040-z

Ziermann H:

Untersuchungen zur Sequenzspezifität der Bindung von Transkriptionsfaktoren an DNA. (Bachelor Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2011) 48 pp.

2010

Conrad U, Floss D M:

Expression of antibody fragments in transgenic plants. In: Kontermann R, Dübel S (Eds.): Antibody engineering, Vol. 2 (2nd edition). Heidelberg [u.a.]: Springer (2010) ISBN 978-3-642-01146-7, 377-386. https://dx.doi.org/10.1007/978-3-642-01147-4_29

Floss D M, Conrad U:

Expression of complete antibodies in transgenic plants. In: Kontermann R, Dübel S (Eds.): Antibody engineering, Vol. 1 (2nd edition). Berlin [u.a.]: Springer (2010) ISBN 978-3-642-01143-6, 489-502. https://dx.doi.org/10.1007/978-3-642-01144-3_31

Floss D M, Mockey M, Zanello G, Brosson D, Diogon M, Frutos R, Bruel T, Rodrigues V, Garzon E, Chevaleyre C, Berri M, Salmon H, Conrad U, Dedieu L:

Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by Elastin-like peptide fusion strategy. J. Biomed. Biotechnol. 2010 (2010) 274346. https://dx.doi.org/10.1155/2010/274346

Floss D M, Schallau K, Rose-John S, Conrad U, Scheller J:

Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol. 28 (2010) 37-45. https://dx.doi.org/10.1016/j.tibtech.2009.10.004

Gastaldello J:

Funktionelle Charakterisierung neuer anti hTNFα VHH cameloid nanobodies. (Bachelor Thesis) Köthen, Hochschule Anhalt (FH) (2010) 84 pp.

Giersberg M, Floss D M, Kipriyanov S, Conrad U, Scheller J:

Covalent dimerization of camelidae anti-human TNF-alpha single domain antibodies by the constant kappa light chain domain improves neutralizing activity. Biotechnol. Bioeng. 106 (2010) 161-166. https://dx.doi.org/10.1002/bit.22653

Kunze M:

Charakteriserung des Abscisinsäure-Rezeptor bindenden Antikörpers anti-RCAR1. (Bachelor Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Institut für Biochemie und Biotechnologie (2010) 50 pp.

Radchuk R, Conrad U, Saalbach I, Giersberg M, Emery R J, Küster H, Nunes-Nesi A, Fernie A R, Weschke W, Weber H:

Abscisic acid deficiency of developing pea embryos achieved by immunomodulation attenuates developmental phase transition and storage metabolism. Plant J. 64 (2010) 715-730. https://dx.doi.org/10.1111/j.1365-313X.2010.04376.x

Vogel M, Lawson M, Sippl W, Conrad U, Roos W:

Structure and mechanism of sanguinarine reductase, an enzyme of alkaloid detoxification. J. Biol. Chem. 285 (2010) 18397-18406. https://dx.doi.org/10.1074/jbc.M109.088989

2009

Floss D M, Kumlehn J, Conrad U, Saalbach I:

Haploid technology allows for the efficient and rapid generation of homozygous antibody-accumulating transgenic tobacco plants. Plant Biotechnol. J. 7 (2009) 593-601. https://dx.doi.org/10.1111/j.1467-7652.2009.00426.x

Floss D M, Sack M, Arcalis E, Stadlmann J, Quendler H, Rademacher T, Stoger E, Scheller J, Fischer R, Conrad U:

Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol. J. 7 (2009) 899-913. https://dx.doi.org/10.1111/j.1467-7652.2009.00452.x

Gahrtz M, Conrad U:

Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. In: Faye L, Gomord V (Eds.): Recombinant proteins from plants: methods and protocols. (Series: Methods in molecular biology, Vol. 483) Totowa, NJ: Humana Press (2009) ISBN 978-1-588-29978-9, 289-312. https://dx.doi.org/10.1007/978-1-59745-407-0_17

Hallmann S:

Funktionelle und physische Charakterisierung von nanobodies (cameloid VHH). (Bachelor Thesis) Köthen, Hochschule Anhalt (FH) (2009) 67 pp.

Jahn D, Matros A, Bakulina A Y, Tiedemann J, Schubert U, Giersberg M, Haehnel S, Zoufal K, Mock H-P, Kipriyanov S M:

Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody. Parasitol. Res. 105 (2009) 655-668. https://dx.doi.org/10.1007/s00436-009-1437-6

Kretzschmar A:

Einfluss der bZIP-Transkriptionsfaktoren ABI5, bZIP67 und EEL auf die ABI3-regulierte Genexpression. (Bachelor Thesis) Köthen, Hochschule Anhalt (FH) (2009) 70 pp.

Zimmermann J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, Macek J, Zoufal K, Glünder G, Falkenburg D, Kiprijanov S M:

Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol. 9 (2009) 79. https://dx.doi.org/10.1186/1472-6750-9-79

2008

Floss D M:

Expression von anti-HIV-1 Antikörper-ELP-Fusionen in Nicotiana tabacum - Biochemische und funktionelle Charakterisierung. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Biowissenschaften (2008) 150 pp.

Floss D M, Sack M, Stadlmann J, Rademacher T, Scheller J, Stöger E, Fischer R, Conrad U:

Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol. J. 6 (2008) 379-391. https://dx.doi.org/10.1111/j.1467-7652.2008.00326.x

Frutos R, Denise H, Vivares C, Neuhaus J M, Vitale S, Pedrazzini E, Ma J, Dix P, Gray J, Pezzotti M, Conrad U, Robinson D:

Pharmaceutical proteins in plants: a strategic genetic engineering approach for the production of tuberculosis antigens. Ann. N. Y. Acad. Sci. 1149 (2008) 275-280. https://dx.doi.org/10.1196/annals.1428.089

Irons S L, Nuttall J, Floß D M, Frigerio L, Kotzer A M, Hawes C:

Fluorescent protein fusions to a human immunodeficiency virus monoclonal antibody reveal its intracellular transport through the plant endomembrane system. Plant Biotechnol. J. 6 (2008) 649-662. https://dx.doi.org/10.1111/j.1467-7652.2008.00348.x

Junghans F, Conrad U, Heilmann A, Spohn U:

Micromechanical investigations on films made of recombinant spider silk proteins and silk fibroin mater. In: Protein and peptide engineering for therapeutic and functional materials: November 26 - 30, 2007, Boston, USA, symposium proceedings. (Series: Materials Research Society symposium proceedings, Vol. 1062) Red Hook, NY, USA: Curran (2008) ISBN 978-1-60560-836-5, 1006-1008.

Nguyen L T:

Identification of stress-responsive ABA-dependent and ABA-independent transcription factors in Arabidopsis thaliana plants with immunomodulated ABA function. (PhD Thesis) Greifswald, Ernst-Moritz-Arndt-Universität (2008) 128 pp.

Schallau K:

Herstellung von Spinnenseidenproteinen in Tabaksamen. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Biowissenschaften (2008) 100 pp.

Tiedemann J, Rutten T, Mönke G, Vorwieger A, Rolletschek H, Meissner D, Milkowski C, Petereck S, Mock H-P, Zank T, Bäumlein H:

Dissection of a complex seed phenotype: novel insights of FUSCA3 regulated developmental processes. Dev. Biol. 317 (2008) 1-12. https://dx.doi.org/10.1016/j.ydbio.2008.01.034

Tran M L:

Functional characterisation of the transcription factors AtMYB44 and AtMYB77 and identification of putative target gene promoters in Arabidopsis thaliana. (PhD Thesis) Greifswald, Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (2008) 162 pp.

Urakami E, Yamaguchi I, Asami T, Conrad U, Suzuki Y:

Immunomodulation of gibberellin biosynthesis using an anti-precursor gibberellin antibody confers gibberellin-deficient phenotypes. Planta 228 (2008) 863-873. https://dx.doi.org/10.1007/s00425-008-0788-z

2007

Floss D M, Falkenburg D, Conrad U:

Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res. 16 (2007) 315-332. https://dx.doi.org/10.1007/s11248-007-9095-x

Mönke G, Linh T M, Conrad U, Hähnel U, Altschmied L, Mohr M, Grosse I, Vorwieger A, Bäumlein H, Weisshaar B, Viehöver P:

GABI-ARABIDO-SEED: Wie steuern Transkriptionsfaktoren die Samenentwicklung bei Pflanzen? GenomXPress Sonderausgabe März (2007) 16.

Rakhimova M:

Expression of spider silk and spider silk-like proteins in potato and tobacco. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2007) 93 pp.

Ten Hoopen P, Hunger A, Muller A, Hause B, Kramell R, Wasternack C, Rosahl S, Conrad U:

Immunomodulation of jasmonate to manipulate the wound response. J. Exp. Bot. 58 (2007) 2525–2535. https://dx.doi.org/10.1093/Jxb/Erm122

2006

Junghans F, Morawietz M, Conrad U, Scheibel T, Heilmann A, Spohn U:

Preparation and mechanical properties of layers made of recombinant spider silk proteins. Appl. Physics A 82 (2006) 253-260. https://dx.doi.org/10.1007/s00339-005-3432-9

Kovaleva M, Bussmeyer I, Rabe B, Grötzinger J, Sudarman E, Eichler J, Conrad U, Rose-John S, Scheller J:

Abrogation of viral interleukin-6 (vIL-6)-induced signaling by intracellular retention and neutralization of vIL-6 with an anti-vIL-6 single-chain antibody selected by phage display. J. Virol. 80 (2006) 8510-8520. https://dx.doi.org/10.1128/Jvi.00420-06

Lin M, Rose-John S, Grötzinger J, Conrad U, Scheller J:

Functional expression of a biologically active fragment of soluble gp130 as an ELP-fusion protein in transgenic plants: purification via inverse transition cycling. Biochem. J. 398 (2006) 577-583. https://dx.doi.org/10.1042/Bj20060544

Scheller J, Leps M, Conrad U:

Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol. J. 4 (2006) 243-249. https://dx.doi.org/10.1111/j.1467-7652.2005.00176.x