Biotrophie und Immunabwehr
Automatisch erkannte Mikrokolonien von Blumeria graminis f.sp. hordei (der Erreger von echte Mehltau) auf Gerstenblatt, 48 Stunden nach der Inokulation.
Ziel der Arbeitsgruppe Biotrophie und Immunabwehr ist es, das Wissen über die Gene und Mechanismen, die der basalen und Breitspektrum-Krankheitsresistenz von Pflanzen zugrunde liegen, zu erweitern und als vielseitigen und nachhaltigen Pflanzenschutzmethode zu ermöglichen. Unsere Forschung basiert auf den etablierten Modellpathosystemen des Echten Mehltaus von Weizen und Gerste, um die Pflanzen-Erreger-Interaktionen in einem breiten genetischen Hintergrund zu untersuchen. Unsere Schlüsseltechnologie ist die Mikrophänomik, die von unserer Forschungsgruppe am IPK-Leibniz-Institut entwickelt und etabliert wurde.
scroll top
Projekte
Breitspektrum-Krankheitsresistenz
Die Breitspektrum-Krankheitsresistenz (BSR) schützt den Wirt vor einer Infektion durch mehr als eine Pathogenart oder die Mehrheit der Rassen eines bestimmten Pathogens. Diese Definition betont den Unterschied zur rassenspezifischen Resistenz, die typischerweise auf einem einzelnen Gen basiert und einen nahezu absoluten Schutz bietet, jedoch nur gegen eine oder wenige Pathogenrassen. Obwohl der BSR normalerweise einen teilweisen Schutz bietet, wird dieser Resistenz auf dem Feld normalerweise als haltbarer angesehen als der rennspezifische Resistenz. Daher glauben wir, dass das Stapeln mehrerer BSR-Gene ein vielversprechender Ansatz ist, um eine starke und dauerhafte Krankheitsresistenz zu erreichen, die die bestehenden rassenspezifischen Resistenzgene ergänzt und verstärkt. Bisher sind jedoch nur sehr wenige BSR-Gene bekannt. Unser Ziel ist es daher, neue BSR-Gene zu entdecken und sie für Forschungs- und Züchtungsanwendungen verfügbar zu machen.
Mikrophänomik
Mikrophänomik ist ein neuer Ansatz, der eine mikroskopische Phänotypisierung im großen Maßstab ermöglicht. Es kombiniert automatisierte Hochdurchsatz-Mikro- und Makroskopie- und Deep-Learning-Bildanalysetools, um den sehr hohen Durchsatz und die Genauigkeit zu erreichen, die für Phenomikanwendungen erforderlich sind. Unsere Forschungsgruppe entwickelt seit 2002 Mikrophänomik-Tools zur Untersuchung von Pflanzen-Pathogen-Interaktionen.
scroll top
Mitarbeitende
scroll top
Publikationen
Frank S, Saeid Nia M, Schäfer A, Desel C, Mulisch M, Voigt U, Nowara D, Tandron Moya Y A, von Wirén N, Bilger W, Hensel G, Krupinska K:
Over-accumulation of chloroplast-nucleus located WHIRLY1 in barley leads to a decrease in growth and an enhanced stress resistance. Plant J. 119 (2024) 1210-1225. https://dx.doi.org/10.1111/tpj.16819
Lück S, Scholz U, Douchkov D:
Introducing GWAStic: A user-friendly, cross-platform solution for genome-wide association studies and genomic prediction. Bioinform. Adv. 4 (2024) vbae177. https://dx.doi.org/10.1093/bioadv/vbae177
Suraweera I U:
Subtilisin-like protease as a potential modulator of barley’s defense response. (Master Thesis) Kiel, Christian-Albrechts-Universität zu Kiel, Fakultät für Agrar- und Ernährungswissenschaften (2024) 57 pp.
Bapela T, Shimelis H, Terefe T, Bourras S, Sánchez-Martin J, Douchkov D, Desiderio F, Tsilo T J:
Breeding wheat for powdery mildew resistance: genetic resources and methodologies - a review. Agronomy 13 (2023) 1173. https://dx.doi.org/10.3390/agronomy13041173
Dracatos P M, Lück S, Douchkov D K:
Diversifying resistance mechanisms in cereal crops using microphenomics. Plant Phenomics 5 (2023) 0023. https://dx.doi.org/10.34133/plantphenomics.0023
Garbaden C:
Funktionale Validierung von Non-Host-Resistenz-Kandidatengenen der Gerste mittels transient-induzierter Gen-Silencing. (Bachelor Thesis) Köthen, Hochschule Anhalt, Fachbereich Angewandte Biowissenschaften und Prozesstechnik (2023) 72 pp.
Hinterberger V, Douchkov D, Lueck S, Reif J C, Schulthess A W:
High-throughput imaging of powdery mildew resistance of the winter wheat collection hosted at the German Federal ex situ Genebank for Agricultural and Horticultural Crops. GigaScience 12 (2023) giad007. https://dx.doi.org/10.1093/gigascience/giad007
Kloppe T, Whetten R B, Kim S-B, Powell O R, Lück S, Douchkov D, Whetten R W, Hulse-Kemp A M, Balint-Kurti P, Cowger C:
Two pathogen loci determine Blumeria graminis f. sp. tritici virulence to wheat resistance gene Pm1a. New Phytol. 238 (2023) 1546-1561. https://dx.doi.org/10.1111/nph.18809
Słomińska-Durdasiak K M:
Host-induced gene silencing as resistance strategy against pathogens. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik (2023) 135 pp.
Al Mamun M D:
The characterization of a peptidase gene (MTA1) strongly associated with powdery mildew resistance in winter wheat. (Master Thesis) Kassel, Universität Kassel (2022) 48 pp.
Bindics J, Khan M, Uhse S, Kogelmann B, Baggely L, Reumann D, Ingole K D, Stirnberg A, Rybecky A, Darino M, Navarrete F, Doehlemann G, Djamei A:
Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors. New Phytol. 236 (2022) 1455-1470. https://dx.doi.org/10.1111/nph.18315
Hinterberger V, Douchkov D, Lück S, Kale S, Mascher M, Stein N, Reif J C, Schulthess A W:
Mining for new sources of resistance to powdery mildew in genetic resources of winter wheat. Front. Plant Sci. 13 (2022) 836723. https://dx.doi.org/10.3389/fpls.2022.836723
Navarrete F, Gallei M, Kornienko A E, Saado I, Khan M, Chia K-S, Darino M A, Bindics J, Djamei A:
TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Plant Commun. 3 (2022) 100269. https://dx.doi.org/10.1016/j.xplc.2021.100269
Saado I:
Deciphering effector protein functions of Ustilago maydis involved in suppressing plant immunity. (PhD Thesis) Bonn, Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (2022)
Saado I, Chia K-S, Betz R, Alcântara A, Pettkó-Szandtner A, Navarrete F, DAuria J C, Kolomiets M V, Melzer M, Feussner I, Djamei A:
Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis. Plant Cell 34 (2022) 2785–2805. https://dx.doi.org/10.1093/plcell/koac105
Bziuk N, Maccario L, Douchkov D, Lueck S, Babin D, Sørensen S J, Schikora A, Smalla K:
Tillage shapes the soil and rhizosphere microbiome of barley – but not its susceptibility towards Blumeria graminis f. sp. hordei. FEMS Microbiol. Ecol. 97 (2021) fiab018. https://dx.doi.org/10.1093/femsec/fiab018
Darino M, Chia K-S, Marques J, Aleksza D, Soto-Jiménez L M, Saado I, Uhse S, Borg M, Betz R, Bindics J, Zienkiewicz K, Feussner I, Petit-Houdenot Y, Djamei A:
Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New Phytol. 229 (2021) 3393-3407. https://doi.org/10.1111/nph.17116
Karki S J, Reilly A, Zhou B, Mascarello M, Burke J, Doohan F, Douchkov D, Schweizer P, Feechan A:
A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin to promote disease. J. Exp. Bot. 72 (2021) 733–746. https://dx.doi.org/10.1093/jxb/eraa489
Navarrete F, Grujic N, Stirnberg A, Saado I, Aleksza D, Gallei M, Adi H, Alcântara A, Khan M, Bindics J, Trujillo M, Djamei A:
The Pleiades are a cluster of fungal effectors that inhibit host defenses. PLoS Pathog. 17 (2021) e1009641. https://dx.doi.org/10.1371/journal.ppat.1009641
Alcântara A, Seitner D, Navarrete F, Djamei A:
A high-throughput screening method to identify proteins involved in unfolded protein response of the endoplasmic reticulum in plants. Plant Methods 16 (2020) 4. https://dx.doi.org/10.1186/s13007-020-0552-3
Hoseinzadeh P, Ruge-Wehling B, Schweizer P, Stein N, Pidon H:
High resolution mapping of a Hordeum bulbosum-derived powdery mildew resistance locus in barley using distinct homologous introgression lines. Front. Plant Sci. 11 (2020) 225. https://dx.doi.org/10.3389/fpls.2020.00225
Kretschmer M, Damoo D, Djamei A, Kronstad J:
Chloroplasts and plant immunity: where are the fungal effectors? Pathogens 9 (2020) 19. https://dx.doi.org/10.3390/pathogens9010019
Lueck S, Beukert U, Douchkov D:
BluVision Macro – a software for automated powdery mildew and rust disease quantification on detached leaves. JOSS 5 (2020) 2259. https://doi.org/10.21105/joss.02259
Lueck S, M. S, Lorbeer M, Melchert F, Backhaus A, Kilias D, Seiffert U, Douchkov D:
Macrobot" – an automated segmentation-based system for powdery mildew disease quantification." Plant Phenomics 2020 (2020) 5839856. https://doi.org/10.34133/2020/5839856
Pathi K M, Rink P, Budhagatapalli N, Betz R, Saado I, Hiekel S, Becker M, Djamei A, Kumlehn J:
Engineering smut resistance in maize by site-directed mutagenesis of LIPOXYGENASE 3. Front. Plant Sci. 11 (2020) 543895. https://dx.doi.org/10.3389/fpls.2020.543895
Pogoda M, Liu F, Douchkov D, Djamei A, Reif J C, Schweizer P, Schulthess A W:
Identification of novel genetic factors underlying the host-pathogen interaction between barley (Hordeum vulgare L.) and powdery mildew (Blumeria graminis f. sp. hordei). PLoS One 15 (2020) e0235565. https://dx.doi.org/10.1371/journal.pone.0235565
Rink P, Djamei A:
Genfunktionen effizient identifizieren mit iPool-seq. BIOspektrum 26 (2020) 504–507. https://dx.doi.org/10.1007/s12268-020-1446-7
Słomińska-Durdasiak K M, Kollers S, Korzun V, Nowara D, Schweizer P, Djamei A, Reif J C:
Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population. Theor. Appl. Genet. 133 (2020) 341–351. https://dx.doi.org/10.1007/s00122-019-03463-5
Alcântara A, Bosch J, Nazari F, Hoffmann G, Gallei M, Uhse S, Darino M A, Olukayode T, Reumann D, Baggaley L, Djamei A:
Systematic Y2H screening reveals extensive effector-complex formation. Front. Plant Sci. 10 (2019) 1437. https://dx.doi.org/10.3389/fpls.2019.01437
Bosch J, Czedik-Eysenberg A, Hastreiter M, Khan M, Guldener U, Djamei A:
Two is better than one: Studying Ustilago bromivora-Brachypodium compatibility by using a hybrid pathogen. Mol. Plant-Microbe Interact. 32 (2019) 1623-1634. https://dx.doi.org/10.1094/MPMI-05-19-0148-R
Hoseinzadeh H, Zhou R, Mascher M, Himmelbach A, Niks R E, Schweizer P, Stein N:
High resolution genetic and physical mapping of a major powdery mildew resistance locus in barley. Front. Plant Sci. 10 (2019) 146. https://dx.doi.org/10.3389/fpls.2019.00146
Llabata P, Richter J, Faus I, Słomiňska-Durdasiak K, Zeh L H, Gadea J, Hauser M T:
Involvement of the eIF2α kinase GCN2 in UV-B responses. Front. Plant Sci. 10 (2019) 1492. https://dx.doi.org/10.3389/fpls.2019.01492
Lück S, Kreszies T, Strickert M, Schweizer P, Kuhlmann M, Douchkov D:
siRNA-Finder (si-Fi) software for RNAi-target design and off-target prediction. Front. Plant Sci. 10 (2019) 1023. https://dx.doi.org/10.3389/fpls.2019.01023
Schweizer P:
Gene-based approaches to durable disease resistance in Triticeae Cereals. In: Miedaner T, Korzun V (Eds.): Applications of genetic and genomic research in cereals. (Woodhead Publishing Series in Food Science, Technology and Nutrition) Duxford, UK u.a.: Elsevier Ltd. (2019) ISBN 978-0-08-102163-7, 165-182. https://doi.org/10.1016/B978-0-08-102163-7.00008-9
Uhse S, Pflug F G, von Haeseler A, Djamei A:
Insertion pool sequencing for insertional mutant analysis in complex host-microbe interactions. Curr. Protoc. Plant Biol. 4 (2019) e20097. https://dx.doi.org/10.1002/cppb.20097
Elmore J M, Perovic D, Ordon F, Schweizer P, Wise R P:
A genomic view of biotic stress resistance. In: Stein N, Muehlbauer G J (Eds.): The Barley Genome, 1st ed. (Series: Kole, C (Ed.): Compendium of Plant Genomes) Cham: Springer (2018) ISBN 978-3-319-92528-8, 233-257. https://dx.doi.org/10.1007/978-3-319-92528-8_14
Li B, Förster C, Robert C A M, Zust T, Hu L, Machado R A R, Berset J D, Handrick V, Knauer T, Hensel G, Chen W, Kumlehn J, Yang P, Keller B, Gershenzon J, Jander G, Köllner T G, Erb M:
Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Sci. Adv. 4 (2018) eaat6797. https://dx.doi.org/10.1126/sciadv.aat6797
Rajaraman J, Douchkov D, Lück S, Hensel G, Nowara D, Pogoda M, Rutten T, Meitzel T, Brassac J, Höfle C, Hückelhoven R, Klinkenberg J, Trujillo M, Bauer E, Schmutzer T, Himmelbach A, Mascher M, Lazzari B, Stein N, Kumlehn J, Schweizer P:
Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biol. 19 (2018) 116. https://dx.doi.org/10.1186/s13059-018-1472-7
Wang H, Chen W, Eggert K, Charnikhova T, Bouwmeester H, Schweizer P, Hajirezaei M R, Seiler C, Sreenivasulu N, von Wirén N, Kuhlmann M:
Abscisic acid influences tillering by modulation of strigolactones in barley. J. Exp. Bot. 69 (2018) 3883-3898. https://dx.doi.org/10.1093/jxb/ery200
Chowdhury J, Lück S, Rajaraman J, Douchkov D, Shirley N J, Schwerdt J G, Schweizer P, Fincher G B, Burton R A, Little A:
Altered expression of genes implicated in xylan biosynthesis affects penetration resistance against powdery mildew. Front. Plant Sci. 8 (2017) 445. https://dx.doi.org/10.3389/fpls.2017.00445
Delventhal R, Rajaraman J, Stefanato F L, Rehman S, Aghnoum R, McGrann G R D, Bolger M, Usadel B, Hedley P E, Boyd L, Niks R E, Schweizer P, Schaffrath U:
A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley. BMC Plant Biol. 17 (2017) 232. https://dx.doi.org/10.1186/s12870-017-1178-0
Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising H B, Kumlehn J, Schweizer P:
Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J. Exp. Bot. 67 (2016) 4979-4991. https://dx.doi.org/10.1093/jxb/erw263
Chowdhury J, Schober M S, Shirley N J, Singh R R, Jacobs A K, Douchkov D, Schweizer P, Fincher G B, Burton R A, Little A:
Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei. New Phytol. 212 (2016) 434-443. https://dx.doi.org/10.1111/nph.14086
Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, Johrde A, Doblin M S, Beahan C T, Kopischke M, Fuchs R, Lipka V, Niks R E, Bulone V, Chowdhury J, Little A, Burton R A, Bacic A, Fincher G B, Schweizer P:
The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol. 212 (2016) 421-433. https://dx.doi.org/10.1111/nph.14065
Ge X, Deng W, Lee Z Z, Lopez-Ruiz F J, Schweizer P, Ellwood S R:
Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace. Sci. Rep. 6 (2016) 29558. https://dx.doi.org/10.1038/srep29558
Ghaffari M R, Ghabooli M, Khatabi B, Hajirezaei M-R, Schweizer P, Salekdeh G H:
Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol. Biol. 90 (2016) 699-717. https://dx.doi.org/10.1007/s11103-016-0461-z
Rajaraman J:
Discovery and validation of genes for quantitative host- and nonhost-resistance in barley and wheat to powdery mildew attack. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2016) 193 pp.
Rajaraman J, Douchkov D, Hensel G, Stefanato F, Gordon A, Ereful N, Caldararu O, Petrescu A-J, Kumlehn J, Boyd L, Schweizer P:
An LRR/malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat. Front. Plant Sci. 7 (2016) 1836. https://dx.doi.org/10.3389/fpls.2016.01836
Schweizer P:
Die Waffen der Pflanzen. Ackerbautag Frankfurter Landw. Verein e.V. 42 (2016) 26-29.
Chowdhury J, Henderson M, Schweizer P, Burton R A, Fincher G B, Little A:
Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei. New Phytol. 204 (2014) 650-660. https://dx.doi.org/10.1111/nph.12974
Douchkov D, Lück S, Baum T, Seiffert U, Schweizer P:
Microphenomics for interactions of barley with fungal pathogens. In: Tuberosa R, Graner A, Frison E (Eds.): Genomics of plant genetic resources. Vol. 2: Crop productivity, food security and nutritional quality. Dordrecht [u.a.]: Springer (2014) ISBN 978-94-007-7574-9, 123-148. https://dx.doi.org/10.1007/978-94-007-7575-6_5
Douchkov D, Lück S, Johrde A, Nowara D, Himmelbach A, Rajaraman J, Stein N, Sharma R, Kilian B, Schweizer P:
Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biol. 15 (2014) 518. https://dx.doi.org/10.1186/s13059-014-0518-8
Schweizer P:
Host and nonhost response to attack fungal pathogens. In: Kumlehn J, Stein N (Eds.): Biotechnological approaches to barley improvement. (Series: Biotechnology in agriculture and forestry, Vol. 69) Berlin: Springer (2014) ISBN 978-3-662-44405-4, 197-235. https://dx.doi.org/10.1007/978-3-662-44406-1_11
Schweizer P, Himmelbach A, Douchkov D:
Method of producing plants having increased resistance to pathogens (RLK_compl3 Hcluster_2). (Industrieanmeldung), Veröffentlichung: 22.05.2014, IPK-Nr. 2012/05. WO2014/076659 (2014).
Schweizer P, Himmelbach A, Douchkov D:
Method of producing plants having increased resistance to pathogens (RLK_7). (Industrieanmeldung), Veröffentlichung: 19.11.2014, IPK-Nr. 2012/07. GB2515206 (2014).
Sharda N:
High-throughput candidate gene identification for a resistance QTL against powdery mildew on barley chromosome 2HL. (Master Thesis) Kiel, Christian-Albrechts-Universität zu Kiel (2014) 63 pp.
Youssef H M, Koppolu R, Rutten T, Korzun V, Schweizer P, Schnurbusch T:
Genetic mapping of the labile (lab) gene: a recessive locus causing irregular spikelet fertility in labile-barley (Hordeum vulgare convar. labile). Theor. Appl. Genet. 127 (2014) 1123-1131. https://dx.doi.org/10.1007/s00122-014-2284-0
Florschütz K, Schröter A, Schmieder S, Chen W, Schweizer P, Sonntag F, Danz N, Baronian K, Kunze G:
Phytochip: on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. J. Virol. Methods 189 (2013) 80-86. https://dx.doi.org/10.1016/j.jviromet.2013.01.008
Kreszies T:
Experimental validation of RNA interference efficiency and off-target prediction in barley. (Bachelor Thesis) Mittweida, Hochschule Mittweida, Fakultät für Mathematik/ Naturwissenschaften/ Informatik (2013) 65 pp.
Ostertag M, Stammler J, Douchkov D, Eichmann R, Hückelhoven R:
The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. Mol. Plant Pathol. 14 (2013) 230-240. https://dx.doi.org/10.1111/j.1364-3703.2012.00846.x
Pliego C, Nowara D, Bonciani G, Gheorghe D M, Xu R, Surana P, Whigham E, Nettleton D, Bogdanove A J, Wise R P, Schweizer P, Bindschedler L V, Spanu P D:
Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol. Plant Microbe Interact. 26 (2013) 633-642. https://dx.doi.org/10.1094/MPMI-01-13-0005-R
Poursarebani N, Ariyadasa R, Zhou R, Schulte D, Steuernagel B, Martis M M, Graner A, Schweizer P, Scholz U, Mayer K, Stein N:
Conserved synteny-based anchoring of the barley genome physical map. Funct. Integr. Genomics 13 (2013) 339-350. https://dx.doi.org/10.1007/s10142-013-0327-2
Redaktion Pflanzenforschung.de:
Neue Perspektiven für den Pflanzenschutz mit HIGS. Interview mit Dr. habil. Patrick Schweizer über das Projekt dsRNAguard"." www.pflanzenforschung.de/de/journal/journalbeitrage/neue-perspektiven-fuer-den-pflanzenschutz-mit-higs-inte-10040 (2013).
Redaktion Pflanzenforschung.de:
Projektporträt dsRNAguard". Kulturpflanzen schalten die Gene ihrer Feinde ab." www.pflanzenforschung.de/de/journal/journalbeitrage/projektportraet-dsrnaguard-kulturpflanzen-schalten-die-10041 (2013).
Gowda Rayapuram C, Jensen M K, Maiser F, Shanir J V, Hornshoj H, Rung J H, Gregersen P L, Schweizer P, Collinge D B, Lyngkjaer M F:
Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol. Plant Pathol. 13 (2012) 135-147. https://dx.doi.org/10.1111/j.1364-3703.2011.00736.x
Guerra D, Mastrangelo A M, Lopez-Torrejon G, Marzin S, Schweizer P, Stanca A M, del Pozo J C, Cattivelli L, Mazzucotelli E:
Identification of a protein network interacting with TdRF1, a wheat RING ubiquitin ligase with a protective role against cellular dehydration. Plant Physiol. 158 (2012) 777-789. https://dx.doi.org/10.1104/pp.111.183988
Metzner E M:
Barley infected by powdery mildew – Host transcriptome and proteome changes and the integration of both data sets. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I Biowissenschaften (2012) 219 pp.
Schweizer P, Douchkov D, Lück S:
Method for producing transgenic plants having increased resistance to pathogens (Patent). WO 2012/172498, Veröffentlichung: 20.12.2012, IPK-Nr. 2011/03-04 (2012).
Spies A, Korzun V, Bayles R, Rajaraman J, Himmelbach A, Hedley P E, Schweizer P:
Allele mining in barley genetic resources reveals genes of race-non-specific powdery mildew resistance. Front. Plant Sci. 2 (2012) 113. https://dx.doi.org/10.3389/fpls.2011.00113
Baum T, Navarro-Quezada A, Knogge W, Douchkov D, Schweizer P, Seiffert U:
HyphArea-Automated analysis of spatiotemporal fungal patterns. J. Plant Physiol. 168 (2011) 72-78. https://dx.doi.org/10.1016/j.jplph.2010.08.004
Douchkov D, Johrde A, Nowara D, Himmelbach A, Lueck S, Niks R, Schweizer P:
Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis. J. Plant Physiol. 168 (2011) 20-29. https://dx.doi.org/10.1016/j.jplph.2010.07.004
Hensel G, Himmelbach A, Chen W, Douchkov D K, Kumlehn J:
Transgene expression systems in the Triticeae cereals. J. Plant Physiol. 168 (2011) 30-44. https://dx.doi.org/10.1016/j.jplph.2010.07.007
Hückelhoven R, Schweizer P:
Quantitative disease resistance and fungal pathogenicity in Triticeae. J. Plant Physiol. 168 (2011) 1-2. https://dx.doi.org/10.1016/j.jplph.2010.09.006
Schweizer P, Stein N:
Large-scale data integration reveals co-localization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol. Plant Microbe Interact. 24 (2011) 1492-1501. https://dx.doi.org/10.1094/MPMI-05-11-0107
Aghnoum R, Marcel T C, Johrde A, Pecchioni N, Schweizer P, Niks R E:
Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. Mol. Plant Microbe Interact. 23 (2010) 91-102. https://dx.doi.org/10.1094/MPMI-23-1-0091
Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Douchkov D, Hensel G, Kumlehn J, Hückelhoven R:
BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol. Plant Microbe Interact. 23 (2010) 1217-1227. https://dx.doi.org/10.1094/MPMI-23-9-1217
Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J, Schweizer P:
Promoters of the barley germin-Like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22 (2010) 937-952. https://dx.doi.org/10.1105/tpc.109.067934
Johrde A:
Assoziationsstudie zur Resistenz gegen den echten Gerstenmehltau (Blumeria graminis f.sp. hordei) in einer genetisch diversen Gerstenpopulation (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III (2010) 165 pp.
Kocsy G, Athmer B, Perovic D, Himmelbach A, Szücs A, Vashegyi I, Schweizer P, Galiba G, Stein N:
Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol. Genet. Genomics 283 (2010) 351-363. https://dx.doi.org/10.1007/s00438-010-0520-0
Marzin S:
Entwicklung einer RNAi basierten Screeningmethode zur Charakterisierung der Trockenstressantwort bei Gerste (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I (2010) 150 pp.
Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P:
HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22 (2010) 3130-3141. https://dx.doi.org/10.1105/tpc.110.077040
Schweizer P, Hückelhoven R, Knogge W, Seiffert U:
Mit Phänomanalyse den Pilz-Pflanzen-Interaktionen auf der Spur. GenomXPress 4 (2010) 7-9.
Sečenji M, Lendvai Á, Miskolczi P, Kocsy G, Gallé Á, Szucs A, Hoffmann B, Sárvári É, Schweizer P, Stein N, Dudits D, Györgyey J:
Differences in root functions during long-term drought adaptation: comparison of active gene sets of two wheat genotypes. Plant Biol. 12 (2010) 871-882. https://dx.doi.org/10.1111/j.1438-8677.2009.00295.x
Zellerhoff N, Himmelbach A, Dong W B, Bieri S, Schaffrath U, Schweizer P:
Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol. 152 (2010) 2053-2066. https://dx.doi.org/10.1104/pp.109.151829
Wise R, Lauter N, Szabo L, Schweizer P:
Genomics of biotic interactions in the Triticeae. In: Feuillet C, Muehlbauer G (Eds.): Genetics and genomics of the Triticeae, 1st ed. (Series: Plant genetics and genomics: crops and models, Vol. 7) New York, NY: Springer (2009) ISBN 978-0-387-77488-6, 559-589. https://dx.doi.org/10.1007/978-0-387-77489-3_19
Beier F:
Regulationsmechanismen des pathogeninduzierbaren HvGER4c Promotors der Gerste. (Diploma Thesis) Köthen, Hochschule Anhalt (FH) (2008) 73 pp.
Göllner K, Schweizer P, Bai Y, Panstruga R:
Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol. 177 (2008) 725-742. https://dx.doi.org/10.1111/j.1469-8137.2007.02339.x
Ihlow A, Schweizer P, Seiffert U:
A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs. BMC Plant Biol. 8 (2008) 6. https://dx.doi.org/10.1186/1471-2229-8-6
Johrde A, Schweizer P:
A class III peroxidase specifically expressed in pathogen-attacked barley epidermis contributes to basal resistance. Mol. Plant Pathol. 9 (2008) 687-696. https://dx.doi.org/10.1111/J.1364-3703.2008.00494.X
Krijger J J, Horbach R, Behr M, Schweizer P, Deising H B, Wirsel S G R:
The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Mol. Plant Microbe Interact. 21 (2008) 1325-1336. https://dx.doi.org/10.1094/MPMI-21-10-1325
Marzin S, Mihaly R, Pauk J, Schweizer P:
A transient assay system for the assessment of cell-autonomous gene function in dehydration-stressed barley. J. Exp. Bot. 59 (2008) 3359-3369. https://dx.doi.org/10.1093/jxb/ern186
Nowara D:
Pflanzenvermittelte Unterdrückung der Genexpression in Blumeria graminis – eine neuartige Methode zur Erzeugung von Resistenz. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2008) 178 pp.
Schweizer P:
Tissue-specific expression of a defence-related peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis. Mol. Plant Pathol. 9 (2008) 45-57. https://dx.doi.org/10.1111/J.1364-3703.2007.00446.X
Zimmermann G:
Germin-ähnliche Proteine der Gerste: Expression und Funktion in der Basalresistenz gegen den Mehltaupilz Blumeria graminis f.sp. hordei. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg (2008) 154 pp.
Fischer A, Lenhard A, Tronecker H, Lorat Y, Kraenzle M, Sorgenfrei O, Zeppenfeld T, Haushalter M, Vogt G, Gruene U, Meyer A, Handlbichler U, Schweizer P, Gaelweiler L:
iGentifier: indexing and large-scale profiling of unknown transcriptomes. Nucleic Acids Res. 35 (2007) 4640-4648. https://dx.doi.org/10.1093/Nar/Gkm331
Gjetting T, Hagedorn P H, Schweizer P, Thordal-Christensen H, Carver T L W, Lyngkjaer M F:
Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol. Plant Microbe Interact. 20 (2007) 235-246. https://dx.doi.org/10.1094/Mpmi-20-3-0235
Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J:
A set of modular binary vectors for transformation of cereals. Plant Physiol. 145 (2007) 1192-1200. https://dx.doi.org/10.1104/pp.107.111575
Kumlehn J, Schweizer P, Langen G, Bieri S, Wetjen T:
PRO-GABI: Pflanzliche Abwehrmechanismen gegen Pilzbefall gezielt einschalten. GenomXPress Sonderausgabe März (2007) 24.
Lange M, Himmelbach A, Schweizer P, Scholz U:
Data Linkage Graph: computation, querying and knowledge discovery of life science database networks. J. Integr. Bioinform. 4 (2007) 68. https://dx.doi.org/10.2390/biecoll-jib-2007-68
Müller D:
Funktionelle Charakterisierung des pathogeninduzierbaren HvGER4c Promotors der Gerste (Hordeum vulgare L.). (Diploma Thesis) Köthen, Fachhochschule Anhalt (2007) ? 29 pp.
Perovic D, Tiffin P, Douchkov D, Bäumlein H, Graner A:
An integrated approach for the comparative analysis of a multigene family: The nicotianamine synthase genes of barley. Funct. Integr. Genomics 7 (2007) 169-179. https://dx.doi.org/10.1007/s10142-006-0040-5
Schweizer P:
Nonhost resistance of plants to powdery mildew—New opportunities to unravel the mystery. Physiol. Mol. Plant Pathol. 70 (2007) 3-7. https://dx.doi.org/10.1016/j.pmpp.2007.07.004
Seiffert U, Schweizer P, Ihlow A, Schulze C:
Quantitative assessment of fungal structures on the leaf surface. pgrc-16.ipk-gatersleben.de/wgrp/mue/mue_projects6.php (2007).
Vorwieger A, Gryczka C, Czihal A, Douchkov D, Tiedemann J, Mock H-P, Jakoby M, Weisshaar B, Saalbach I, Bäumlein H:
Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. Planta 226 (2007) 147-158. https://dx.doi.org/10.1007/s00425-006-0476-9
Buck-Sorlin G H, Kniemeyer O, Kurth W:
Physiologie und Morphologie der Pappel (Populus sp.) modelliert mit Relationalen Wachstumsgrammatiken. In: Wunn E (Ed.): Die grüne Reihe: Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik, 17. Tagung, Freiburg, 26. bis 28. September 2005. Trippstadt: Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz (2006) 1-11.
Dong W, Nowara D, Schweizer P:
Protein polyubiquitination plays a role in basal host resistance of barley. Plant Cell 18 (2006) 3321-3331. https://dx.doi.org/10.1105/tpc.106.046326
Galiba G, Kocsy G, Vágúkfaövo A, Stein N, Schweizer P, Dubcovsky J, Cattivelli L:
Gene identification by transcript profiling and real time PCR during cold acclimation using wheat 5A chromosome substitution and recombinant lines. In: Börner A, Pánková K, Snape J W (Eds.): Proceedings of the 13th International EWAC Conference, 27 June - 1 July 2005 Prague, Czech Republic. (Series: European Wheat Aneuploid Co-Operative newsletter, Vol. 13) Gatersleben: Institut für Pflanzengenetik und Kulturpflanzenforschung (2006) 33-37.
Kurth W, Buck-Sorlin G H, Kniemeyer O:
Relationale Wachstumsgrammatiken: Ein Formalismus zur Spezifikation multiskalierter Struktur-Funktions-Modelle von Pflanzen. In: MLUV des Landes Brandenburg (Ed.): Modellierung pflanzlicher Systeme aus historischer und aktueller Sicht: Symposium zu Ehren von Prof. Dr. Dr. h. c. Eilhard Alfred Mitscherlich. (Schriftenreihe des Landesamtes für Verbraucherschutz, Landwirtschaft und Flurneuordnung; Abteilung Landwirtschaft und Gartenbau; Reihe Landwirtschaft Band 7, Heft 1). Frankfurt/O.: Landesamtes für Verbraucherschutz Landwirtschaft und Flurneuordnung (2006) 36-45.
Matros A, Amme S, Kettig B, Buck-Sorlin G H, Sonnewald U, Mock H-P:
Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant Cell Environ. 29 (2006) 126-137. https://dx.doi.org/10.1111/j.1365-3040.2005.01406.x
Schweizer P, Ihlow A, Seiffert U:
Hochdurchsatz-Phänomanalyse in Getreide: Auf der Jagd nach der Funktion pflanzlicher Gene bei Pathogenbefall. GenomXPress 2 (2006) 16-19.
Trujillo M, Altschmied L, Schweizer P, Kogel K H, Hückelhoven R:
Respiratory burst oxidase homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. J. Exp. Bot. 57 (2006) 3781-3791. https://dx.doi.org/10.1093/Jxb/Erl191
Weidner A, Varshney R K, Buck-Sorlin G H, Stein N, Graner A, Börner A:
QTLs for salt tolerance in three different barley mapping populations. In: Börner A, Pánková K, Snape J W (Eds.): Proceedings of the 13th International EWAC Conference, 27 June - 1 July 2005 Prague, Czech Republic. (Series: European Wheat Aneuploid Co-Operative newsletter, Vol. 13) Gatersleben: Institut für Pflanzengenetik und Kulturpflanzenforschung (2006) 51-55.
Zimmermann G, Bäumlein H, Mock H-P, Himmelbach A, Schweizer P:
The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance1[W][OA]. Plant Physiol. 142 (2006) 181-192. https://dx.doi.org/10.1104/pp.106.083824
scroll top